
Quality Diversity Optimization: A Modular Framework and
Continuous Density Estimation

By

David Haolong Lee

Submitted to the University of Southern California in partial fulfillment

of graduation requirements for honors degree

Viterbi School of Engineering

Thomas Lord Department of Computer Science

Spring 2024

Research Advisor: Prof. Stefanos Nikolaidis

Signature:

Honors Advisor: Prof. Sandeep Gupta

Signature:

Contents

1 Abstract 4

2 Introduction 5

2.1 Quality Diversity Optimization . 5

2.2 Framework for Quality Diversity Optimization 9

2.3 Leveraging Density Estimation in Diversity Optimization 10

3 Problem Definitions 13

4 Existing Algorithms 14

5 pyribs: A Bare-Bones Python Library for Quality Diversity Optimization 18

5.1 Design Principles . 18

5.2 The RIBS Framework . 20

5.3 Composing Algorithms in RIBS . 23

5.4 Comparison to Existing QD Libraries . 26

5.5 Summary . 30

6 Density Descent in Diversity Optimization 31

6.1 Density Estimation Methods . 31

6.2 Algorithmic Details . 33

6.3 Connection between Novelty Search and Kernel Density Estimates 35

6.3.1 Stability Under Non-stationarity . 36

6.3.2 Equivalence of NS and DDS-KDE . 38

6.4 Reservoir Sampling for Maintaining a Representative Buffer 38

6.5 Experiments . 39

6.5.1 Experimental Design . 40

1

6.5.2 Domain Details . 41

6.5.3 Statistical Analysis . 43

6.6 Bandwidth Selection for DDS-KDE . 45

6.7 Summary of Results . 47

7 Conclusion 48

A Tukey’s HSD Pairwise Comparisons 49

B Proofs 50

2

List of Figures

1 Adapted from [8]. 7

1a The layout in the deceptive maze domain. The goal is to find a neural

network that navigates from the start (the bigger circle) to the end (the

smaller circle). Red line traces a path through the maze. 7

1b Final positions reached by the robot when directly minimizing the distance

to the goal location. 7

1c Final positions reached by the robot when applying diversity optimization

(Novelty Search) to attempt to search for neural networks that reach every

position in the maze. Notice that, despite ignoring the proximity of the

robot to the goal location, more robots ends up finding the goal location. . . 7

2 The trajectories of the lunar rover approaching from three different directions,

recreated from videos in pyribs tutorials [10]. The objective here is to minimize the

impact velocity. The feature of each rover is determined by where they first contact

the ground. 7

2a Lunar rover approaching from the left of the landing site. 7

2b Lunar rover approaching from above the landing site. 7

2c Lunar rover approaching from the right of the landing site. 7

3 Result of latent space illumination for objective “A photo of Beyonce” and for

features “A small child” and “A woman with long blonde hair.” The axes values

indicate the score returned by the CLIP model, where lower score indicates a better

match between the text and the image. Adapted from [11]. 8

3

4 Pyribs implements the RIBS framework for QD optimization. The user first

ask()’s for solutions from a scheduler. The scheduler selects emitters to ask()

for solutions and returns the solutions to the user. After evaluating the solutions, the

user tell()’s the results to the scheduler. The scheduler add()’s the solutions

to the archive and receives information that it tell()’s to the emitters, enabling

the emitters to update their internal search state. 19

5 Pyribs visualization tools. This figures show example 2D heatmaps, where the axes

correspond to the feature values, and the color of each archive cell indicates its ob-

jective value. In SlidingBoundariesArchive, the points show the locations

of solutions in feature space, and the lines show the grid boundaries. We also show a

parallel axes plot which can visualize an archive of any dimensionality. In this plot,

a single solution’s features are plotted as a line connecting the feature ϕ1 . . .ϕk,

and the line is colored according to the solution’s objective value. Adapted from [1]. 27

6 Tutorials enable pyribs users to quickly learn about the library and experiment with

problems from the QD literature. Adapted from [1]. 28

7 The effect of the bandwidth h on a one-dimensional KDE. Red dots represent the

data, and black lines depict the KDE. When h is too small, the KDE reveals many

misleading local maxima. When h is too large, the KDE conceals modes from the

underlying distribution. Figure adapted from [2] 32

8 Overview of density descent search (DDS) for solving diversity optimization (DO)

problems. DDS first draws solutions from a Gaussian N (µ,Σ). After computing

the solution features (in this case, the final position of the robot in a maze), DDS

ranks solutions by density. This density ranking is passed to CMA-ES, which

updates the search distribution to sample solutions with lower density on the next

iteration. Concurrently, solutions are stored in a buffer that forms the basis for

density estimates, and in a passive archive that tracks all discovered solutions.

Adapted from [2]. 33

4

9 An example of an arm configuration for the Arm Repertoire domain. Note that

while this arm has only 12 degrees of freedom, the arms in the experiments of this

thesis has 100 degrees of freedom. Figure adapted from [81]. 42

10 Coverage and cross-entropy (CE) after 5,000 iterations of each algorithm in all

domains. We report the mean over 10 trials, with error bars showing the standard

error of the mean. Higher coverage and lower cross-entropy are better. 43

11 Coverage and cross-entropy (CE) after 5,000 iterations of DDS-KDE in all domains

for each normalized bandwidth h0. We report the mean over 10 trials (3 trials for

Deceptive Maze) with error bars showing the standard error of the mean. Higher

coverage and lower cross-entropy are better. Highlighted cells are results from the

main experiments in Fig. 10. The plots show the normalized bandwidth on the x-axis 46

5

List of Tables

1 By selecting different components in the RIBS framework, we can compose a variety

of recent algorithms from the QD literature and test them in pyribs. Furthermore,

we can identify combinations of components which may lead to new algorithms.

Adapted from [1]. 23

2 One-way ANOVA results in each domain. All p-values are less than 0.001. 43

3 Pairwise comparisons for coverage in each domain. Each entry compares the

method in the row to the method in the column. For instance, we can see that

DDS-KDE had significantly higher coverage than NS in LP. Comparisons were

performed with Tukey’s HSD test. > indicates significantly greater, < indicates

significantly less, and − indicates no significant difference. ∅ indicates an invalid

comparison. 49

4 Pairwise comparisons for cross-entropy in each domain. Note that lower cross-

entropy is better, so significantly less (<) indicates that a method is significantly

better. 49

6

1 Abstract

Quality diversity optimization seeks to discover a set of high-quality solutions that elicit diverse

features. My thesis contributes to this field by introducing a modular framework to understand qual-

ity diversity algorithms. I utilized the framework to develop an improved algorithm incorporating

insight from density estimation techniques. Researchers have developed many quality diversity

algorithms incorporating insights from diverse fields such as reinforcement learning, architecture,

human-robot interaction, and scenario generation. To account for the growing array of quality

diversity algorithms, I developed a flexible modular framework that encapsulates this diverse array

of algorithms. Since its conception, this framework has been utilized in at least 20 research papers.

Furthermore, I proposed a novel algorithm (which conforms to the modular framework) based

on density estimation techniques that outperforms existing baselines algorithms. I compare my

algorithm, Density Descent Search (DDS), with existing quality diversity algorithms in empirical

experiments and theoretical analysis. The empirical experiments reveal the superior performance

of DDS, and the theoretical analysis helps explain the improved performance of DDS over other

algorithms.

7

2 Introduction

This thesis presents research on quality diversity optimization (QD) and diversity optimization (DO)

completed at the Interactive and Collaborative Autonomous Robotics (ICAROS) lab at University

of Southern California. This thesis describes research related to

(a) conceptualizing an algorithmic framework for quality diversity to illustrate how the framework

addresses the problem of a growing numbers of quality diversity algorithms and how the

framework informed the development of a software library, pyribs, to support implementing

novel quality diversity algorithms for both users and researchers [1].

(b) conceptualizing an algorithm for diversity optimization, Density Descent Search, to illustrate

the crucial role that continuous density estimation plays in efficiently exploring the feature

space [2].

The algorithmic framework (RIBS) and software library (pyribs) [1] played an important role in

designing and prototyping Density Descent Search [2]. The algorithmic structure of Density Descent

Search closely resembles that of the model proposed in the algorithmic framework. Moreover, the

algorithm itself and all baselines algorithms that it was compared to are all implemented with the

pyribs library.

2.1 Quality Diversity Optimization

Quality diversity optimization is a generalization of single-objective optimization. Single-objective

optimization is an ubiquitous problem solving technique that has applications spanning from path-

finding in a maze [3] to landing a lunar rover [4] to generating realistic images of celebrities [5].

In single-objective optimization problems, the goal is to find a single solution that optimizes an

objective function f(·). Instead of seeking the single optimal solution, QD searches for a set of

behaviorally diverse solutions where each solution is optimal among the solutions with the same

behaviors. In other words, QD searches of a set of high-quality solutions that exhibits diverse

8

(a) The layout in the deceptive maze domain.
The goal is to find a neural network that nav-
igates from the start (the bigger circle) to the
end (the smaller circle). Red line traces a path
through the maze.

(b) Final positions reached by the robot when
directly minimizing the distance to the goal lo-
cation.

(c) Final positions reached by the robot when ap-
plying diversity optimization (Novelty Search)
to attempt to search for neural networks that
reach every position in the maze. Notice that,
despite ignoring the proximity of the robot to
the goal location, more robots ends up finding
the goal location.

Figure 1: Adapted from [8].

features.

The problem of finding a range of solutions that are diverse with respect to pre-specified features is

referred to as diversity optimization (DO). DO can be characterized as a special instance of QD

where the objective value of all solutions is constant [6]. It is important to note the close connection

between QD and DO algorithms: “When the objective value of all solutions is constant, [a QD

algorithm] will be indifferent to the quality of the solutions and therefore only optimize for diversity”

[2]. Thus, some researchers consider QD or DO individually and then leverage the insights on

one problem to solve the other one more effectively. An example of this is Novelty Search [3], a

DO algorithm, and Novelty Search with Local Competition [7], a QD algorithm based on Novelty

Search. A more formal description of QD and DO are presented in Sec. 3.

QD presents many advantages over single-objective optimization. QD can mitigate convergence

to local optima, enhance robustness of the algorithm, and improve control over the output of the

algorithm. I will illustrate the benefits of QD by extending the aforementioned single-objective

optimization problems — path-finding in a maze, landing a lunar rover, and generating realistic

images of celebrities — to QD problems.

9

(a) Lunar rover approaching from the left of the
landing site.

(b) Lunar rover approaching from above the
landing site.

(c) Lunar rover approaching from the right of
the landing site.

Figure 2: The trajectories of the lunar rover approaching from three different directions, recreated from videos in pyribs
tutorials [10]. The objective here is to minimize the impact velocity. The feature of each rover is determined by where
they first contact the ground.

Convergence to local optima present many challenges in single-objective optimization. In contrast,

searching directly for behavioral diversity may results in finding sub-optimal solutions that act as

“stepping stones,” mitigating convergence to local optima [9]. A classic example is the problem

of training an agent (such as a neural network) to reach a target position in a deceptive maze [3].

An example of such maze is shown in Fig. 1a. Here, a single-objective optimizer that is directly

minimizing the distance between the agent’s final position and a target goal causes the agent to get

stuck. This behavior is depicted in Fig. 1b: the majority of the robots ends up on the bottom-left and

middle-left of the maze, as these regions are deceptively close to the goal location. The problem can

be solved by ignoring the objective of directly reaching the target location and instead attempting to

find a diverse range of agents, each of which reaches a different region of the maze (Fig. 1c).

QD algorithms are more robust than single-objective algorithms, as they can adapt to unexpected

changes in the environment. This is a reasonable consideration for real world models/algorithms

that are trained on simulations, since the real world may introduce variables or factors that are

unaccounted for in the simulation. For instance, consider the task of landing a lunar rover, where

the objective is to minimize the impact velocity of the rover subject to the hard constraint that the

rover’s final position must be with in the boundary of the landing site. A single-objective algorithm

will only find one trajectory that lands the rover. In contrast, QD algorithms can search for a diverse

set of trajectories that approach the landing site from different directions, in addition to minimizing

the impact velocity of these trajectories (Fig. 2). This is useful when certain sudden changes in the

10

Figure 3: Result of latent space illumination for objective “A photo of Beyonce” and for features “A small child” and
“A woman with long blonde hair.” The axes values indicate the score returned by the CLIP model, where lower score
indicates a better match between the text and the image. Adapted from [11].

environment makes approaching from certain directions less desirable.

QD algorithm can be combined with existing single-objective algorithms directly to improve control

over the output of the algorithm. The most prominent example of this is Latent Space Illumination

[11], in which QD algorithm explores the latent space of a generative model to produce images

exhibiting speicifc features. For example, in Fig. 3, the objective function to maximize is the

text-to-image similarity between the generated image and the text prompt “A photo of Beyonce” as

returned by CLIP (Contrastive Language-Image Pre-Training) [12]. The features are the text-to-

image similarity between the generated image and “A woman with long blode hair” and “A small

child,” respectively.

These examples are implemented in pyribs [1], a Python library for implementing QD algorithms

and experiments. Executable code and a detailed walkthrough of the lunar lander and image

11

generation example can be found on pyribs’s website (at [10] and [13], respectively).

The three applications of QD presented here demonstrates the benefits that QD can bring to versatile

fields of research. Indeed, QD has grown to become a general-purpose optimization paradigm with

applications in a number of diverse areas [1]. As of writing, there are at least 238 papers on the

topic [14], spanning areas such as reinforcement learning [15–20], robot manipulation [21, 22],

human-robot interaction [23–25], video game level generation [26, 27], agent testing [28], urban

planning [29], design [30], internet congestion control [31], and drug compound discovery [32].

QD has also moved outside of publications and into more popular forms of media like blog posts

[33–39] and conference tutorials [40–43].

2.2 Framework for Quality Diversity Optimization

To account for the the growing number of QD algorithms and publication, my colleagues at the

ICAROS lab and I conceptualized a modular framework, RIBS,1 to represent the field’s growing

array of algorithms. Moreover, we developed pyribs [1], a highly modular library built on RIBS,

that facilitates implementation of QD algorithms under RIBS.

To unify the many algorithms proposed by these works, the RIBS framework abstracts all QD

algorithms into three components: the archive, the emitters, and the scheduler [1]. An additional

advantage of this approach is that it facilitates the mixing of various components from different

algorithms to create new algorithms.

Our work was published in “pyribs: A Bare-Bones Python Library for Quality Diversity Optimiza-

tion” at The Genetic and Evolutionary Computation Conference (GECCO) 2023 [1]. The discussion

of the details of the framework and relevant implementation choices will draw heavily from the

published paper.

1The name “RIBS” stems from the title of [44], “Covariance Matrix Adaptation for the Rapid Illumination of
Behavior Space,” which introduced the notions of emitters and schedulers.

12

2.3 Leveraging Density Estimation in Diversity Optimization

Continuous, stable approximations of the density in feature space can empower DO algorithms

to explore the feature space more efficiently. To this end, my colleagues at the ICAROS lab

and I proposed a new algorithm, density descent search (DDS), incorporating continuous density

estimates. We realized that existing DO algorithms implicitly search the feature space according to

the solution density. However, current approaches applies discrete or unstable density estimates,

which hinders efficient exploration in the feature space. Thus, DDS leverages density estimation

methods such as kernel density estimation (KDE) and continuous normalizing flow (CNF).

One common approach to DO problems is the Novelty Search (NS) algorithm [3]. NS retains an

archive of previously found solutions, and aims to expand the archive by finding solutions that are

far away in the feature space from existing solutions in the archive. Specifically, NS optimizes for

solutions with a high novelty score, which is calculated as the average distance in feature space

from a solution to its k-nearest neighbors in the archive.

Although novelty score is originally defined in terms of distance, it can be interpreted as an

approximation of density [45]. Density is directly proportional to the number of solutions in a

region of feature space. Generally, A high novelty score indicates that a solution’s features are far

from the features of its k-nearest neighbors in the archive, i.e., it is located in an area of the feature

space with low density.

Another approach to DO is to apply QD algorithms and let all solutions in the search space have

the same quality. Notably, A state-of-the-art QD algorithm is Covariance Matrix Adaptation MAP-

Annealing (CMA-MAE) [46], which optimizes for archive improvement with the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [47] optimizer. CMA-MAE maintains a discrete archive

(usually a grid) of solutions in feature space. When the solution qualities are identical, this archive

becomes a histogram that represents the distribution of solutions in feature space [46]. Each cell in

the archive becomes a bin of the histogram, with lower values of the bins indicating lower density

of solutions. CMA-MAE then performs density descent on this histogram, where it continually

13

seeks to fill the areas of low density.

To efficiently explore feature space, both NS and CMA-MAE leverage density estimates of solutions

in feature space — NS is guided by novelty score [3], while CMA-MAE performs density descent

on its histogram [46]. However, both of these density estimates have their own drawbacks:

(a) The novelty score in NS is continuous, but provides a weaker stability guarantee, meaning

that its value can change arbitrarily when new features are discovered.

(b) The histogram in CMA-MAE provides a stronger stability guarantee, but utilizes a discrete

approximation that gives flat gradient signals on its bins.

To this end, I propose to utilize continuous and stable density estimation techniques such as kernel

density estimation.

[46] also discusses the challenge of distortion in QD, which describes the situation where many

solutions exhibit similar or identical features. With strong distortion, the optimizer does not receive

enough signal to reach edge of the feature space since most solutions exhibit similar features. This

is analogous to the challenge of performing gradient descent on a function that has equal objective

value for most solutions. [46] mitigated this problem by using a more fine-grained grid to allow a

much higher level of precision when measuring the diversity between two features. Our empirical

results indicate that DDS is very resilient against distortion Sec. 6.5.3.

Our empirical experiment and theoretical analysis are published in the paper “Density Descent

for Diversity Optimization” and will be appearing at The Genetic and Evolutionary Computation

Conference (GECCO) 2024 [2]. The discussion of the details and performance of DDS will draw

heavily from the published work.

14

3 Problem Definitions

Our problem definitions follows that of prior work [2, 3, 44].

Quality Diversity Optimization (QD). For solution θ ∈ Rn, QD assumes an objective function

f : Rn → R and m feature functions, jointly represented as a vector-valued function ϕ : Rn → Rm.

We refer to the image of ϕ as the feature space S. The goal of QD is to find, for each feature s ∈ S,

a solution θ where f(θ) is maximized and ϕ(θ) = s (i.e. the solution θ exhibits feature s).

Diversity Optimization (DO). DO is a special case of QD where the objective is constant, i.e.,

f(θ) = C. The goal of DO is to find, for each s ∈ S, a solution θ where ϕ(θ) = s.

15

4 Existing Algorithms

Various methods address the QD and DO problems by relaxing them to the problem of finding an

archive (i.e., a set) A of representative solutions. The structure of the archive defines two major

families of algorithms: those based on Novelty Search and those based on MAP-Elites.

The literature review in this section draws heavily from the discussion of QD algorithms and

non-stationarity outlined in [2].

Novelty Search (NS). The key insight of NS [3] is to discover diverse solutions in feature space

by optimizing for solutions that are “novel” with respect to a current set of solutions. Given a set

of features X ⊆ Rm, the novelty of a solution θ ∈ Rn and its features y = ϕ(θ) relative to X is

encapsulated in its novelty score, denoted ρ(y;X):

ρ(y;X) = 1

k

∑
y′∈Nk(y;X)

dist(y,y′) (1)

where Nk(y;X) is the set of k-nearest neighbors to y in X , and dist is a distance function.

NS gradually adds novel solutions to the archive A and explores the feature space. NS maintains

the archive A of unbounded size and generates solutions with an underlying optimizer, traditionally

a genetic algorithm. For each solution θ produced by the optimizer, NS computes the novelty score

with respect to an archive A, i.e., ρ(y;A). If ρ(y;A) exceeds an acceptance threshold, then (θ,y)

is added to the archive.

Importantly, the novelty score is non-stationary, meaning that the novelty of a solution θ changes

as the archive A is updated. Thus, the shape of the novelty score function changes significantly

throughout the QD search, which is not ideal for adaptive optimizers that adapts according to the

shape of the function.

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites). While NS was developed for DO,

MAP-Elites [48] was developed for the general QD setting. Compared to the unstructured archive

16

of NS, MAP-Elites divides the feature space into a predefined tessellation T : Rm → {1, . . . , l},

where e ∈ {1, . . . , l} is a cell in the tessellation and l is the total number of cells. Given a cell e,

the MAP-Elites archive associates a solution θ with cell e if and only if the solution’s features are

contained in e, i.e., T (ϕ(θ)) = e. Moreover, MAP-Elites stores at most one solution for every cell

in the tessellation.

During a QD search, MAP-Elites gradually collects high-performing solutions that have diverse

features. MAP-Elites first draws solutions from a predefined distribution, e.g., a Gaussian, and

inserts the solutions into the archive. Subsequently, MAP-Elites generates and inserts new solutions

by mutating existing archive solutions with a genetic operator, such as the Iso+LineDD operator

[49]:

θ′ := θi + σ1N (0, I) + σ2N (0, 1)(θi − θj) (2)

Importantly, when solutions inserted into the archive land in the same tessellation cell, MAP-Elites

only retains the solution with the greatest objective value.

The choice of tessellation in MAP-Elites can significantly impact scalability. The most common

tessellation is a grid tessellation [48], which divides the feature space into equally-sized hyperrect-

angles. In high-dimensional feature spaces, grid tessellations require exponentially more memory

due to the curse of dimensionality. For example, a grid tessellation in a 10D feature space, with 5

cells along each dimension, requires 510 cells. Thus, a common alternative is the centroidal Voronoi

tessellation (CVT) [50], which divides the feature space into l evenly-sized polytopes.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES). One recent line of QD algorithms

has combined CMA-ES [47] with MAP-Elites. CMA-ES is a state-of-the-art single-objective opti-

mizer that represents a population of solutions with a multivariate GaussianN (µ,Σ). Each iteration,

CMA-ES draws λ solutions from the Gaussian. Based on the rankings (rather than the raw objec-

tives) of the solutions, CMA-ES adapts the covariance matrix Σ to regions of higher-performing

solutions. While CMA-ES is a derivative-free optimizer, it has been shown to approximate a natural

gradient [51].

17

Covariance Matrix Adaptation MAP-Elites (CMA-ME). The first work to integrate CMA-ES

with MAP-Elites was CMA-ME [44]. The key idea of CMA-ME is to optimize for archive im-

provement with CMA-ES. Namely, in addition to a MAP-Elites-style archive, CMA-ME maintains

instances of CMA-ES. Each CMA-ES instance samples solutions from a Gaussian distribution, and

the solutions are ranked based on how much they improve the archive, e.g., solutions that found new

cells in the archive are ranked high, while those that were not added at all are ranked low. With this

improvement ranking, CMA-ES adapts the Gaussian to sample solutions that will further improve

the archive.

Mathematically, the ranking is a function π : {1, . . . , λ} → {1, . . . , λ} such that π(i) ≥ π(j) if

and only if ∆i ≥ ∆j where ∆i is the improvement of the archive by solution θi. ∆i is defined as

f(θi) if the cell e corresponding to θi is empty and f(θi)− f(θe) is te is occupied by an incumbent

θe. In DO settings, since all solutions have equal objective value, the improvement ranking simply

places solutions that fills a new cell ahead of solutions that did not add a new cell. In other words,

solutions are simply ranked based on whether or not they fill an empty e: ∆i = C for a θi such that

T (ϕ(θi)) = {} (e is empty), and ∆i = 0 otherwise.

Covariance Matrix Adaptation MAP-Annealing (CMA-MAE). One limitation of CMA-ME

is that it focuses too much on exploring for new cells in feature space rather than optimizing the

objective [17]. CMA-MAE [46] addresses this problem by introducing an archive learning rate α.

When α = 1, CMA-MAE maintains the same exploration behavior as CMA-ME, but when α = 0,

CMA-MAE focuses solely on optimizing the objective, like CMA-ES. For 0 < α < 1, CMA-MAE

blends between these two extremes, enabling it to both explore feature space and optimize the

objective.

In DO settings, where the objective is constant (f(·) = C), CMA-MAE naturally performs density

descent [46]. According to [46], the archive becomes a histogram that models how many solutions

have been found in each region of the feature space. A historgram is composed of many bins in a

grid pattern; lower values in a bin indicate lower density of solutions, i.e., if a histogram bin has

18

a low value, few solutions have been discovered in that region of feature space. CMA-MAE then

seeks to descend the histogram by searching for solutions that fill the low-valued histogram bins.

19

5 pyribs: A Bare-Bones Python Library for Quality Diversity

Optimization

As a growing field of research in computer science, QD has had many libraries that attempted

to encapsulate QD algorithms under a general framework. These libraries are important as they

support ongoing research in the field, and help lower the barrier of entry for new members of the

QD community. For instance, Sferesv2 [52], QDpy [53], and QDax [54] have all been used in QD

literature to implement and describe novel QD algorithms. However, these libraries each came

short on at least one of the three criteria that our lab holds to be the core principles in designing

a fundamental library for QD. These criteria are as follows: (i) sufficiently simple for new users

and for modification, (ii) accessible to a wide audience, and (iii) sufficiently flexible to support

concurrent and future research.

To this end, the first version of the RIBS framework was outlined in [44], and the first version of

pyribs was released about a year later. After many iterations of development, the RIBS framework

was fully conceptualized and implemented in pyribs [1].

I was responsible for implementing the fundamental modules that supported the RIBS framework

and modeling QD algorithms under the RIBS framwork. I will describe the design principle that

guided the development of pyribs (Sec. 5.1), expound on the RIBS framework in detail (Sec. 5.2),

and comparing pyribs to existing QD libraries (Sec. 5.4).

5.1 Design Principles

Simple. pyribs was designed to be “bare-bones,” maintaining only the core components that are

required for a QD algorithm to optimize in a continuous feature space [1]. The simplicity of the

design makes the library easier for new users to adopt, while the focus on continuous optimization

problems reduces implementation complexity and makes the defined search space less abstract.

20

Scheduler

Archive

add()
solutions

ask()
for solutions

ask()
for solutions add() info

return

tell()
evaluations

tell()
results

Emitters

User

Figure 4: Pyribs implements the RIBS framework for QD optimization. The user first ask()’s for solutions from a
scheduler. The scheduler selects emitters to ask() for solutions and returns the solutions to the user. After evaluating
the solutions, the user tell()’s the results to the scheduler. The scheduler add()’s the solutions to the archive and
receives information that it tell()’s to the emitters, enabling the emitters to update their internal search state.

Flexible. pyribs is also “bare-bones” in the sense that the core components of the library — archives,

emitters, and schedulers — are all exposed to the user [1]. This allows users to easily exchange

components of the QD algorithm. For example, by exchanging components, users can implement

any of the algorithms listed in Tab. 1. Moreover, the design provides a foundation to implement

future QD algorithms discovered by researchers, as the researchers can easily extend or rewirte the

functionalities of individual components to achieve the outcome that they desire.

Accessible. From beginners to experienced researchers, pyribs is accessible to everyone. pyribs

publishes readable source code, is easy to install, and has a comprehensive documentation website

defining its usage [1]. The detailed documentation facilitates experienced researchers to extend the

library or tamper with the source code. Moreover, pyribs’s choices of simple dependency ensure

that installing pyribs and studying the tutorials is straightforward and frictionless even for beginners

with limited computational resources and/or basic hardwares.

21

5.2 The RIBS Framework

As shown in Fig. 4, a QD algorithm in RIBS is comprised of three components: (1) an archive to

store solutions generated by the QD algorithm, (2) one or more emitters to generate new solutions,

and (3) a scheduler to manage the interaction of the archive and emitters. Algorithm 1 shows the

standard execution loop for combining these components. As shown in Sec. 5.3, this execution loop

is flexible and not limited to a single call to the ask-tell interface.

Archive. The archive is a data structure that stores the solutions generated by the QD algorithm,

along with any information relevant to solutions, such as objective and feature values. The primary

archive method is add(), which takes in multiple solutions with their objective and feature values,

attempts to add them to the collection of solutions, and returns information about the addition.

Examples of such information include “status” (whether the solution found a new cell in the archive,

improved an existing cell, or was not added at all [44]), “novelty” (the average distance in feature

space from the solution to its k-nearest neighbors in the archive [3]), and “improvement value”

(the difference between the solution’s objective value and that of the solution which it replaced

[46]). Archives may support additional functionality, such as methods for sampling solutions and

retrieving solutions with given feature values.

An important choice in the implementation of add() is the order of inserting solutions. The

simplest choice is to insert solutions sequentially, i.e., one after another. pyribs offers sequential

addition but defaults to the alternative of inserting all solutions simultaneously as a batch.

Batching the additions has the following benefits:

• Some metrics depend on the order in which solutions are inserted. For example, if two

solutions θa and θb have similar features, then θa may be inserted with high novelty, while

θb is subsequently inserted with low novelty because θa is already in the archive. Batching

overcomes this issue by “freezing” the archive, then computing the metrics of all solutions

with respect to the frozen archive.

22

• Batching the additions enhances the performance of the operation, as libraries like NumPy

[55] (used in pyribs [1]) and JAX [56] (used in QDax [54]) are designed to operate on batches

of data.

Emitters. QD algorithms in RIBS instantiate one or more emitters. Emitters generate solutions

and adapt its internal states based on the objective, features, and archive insertion feedback of those

solutions. Since sometimes not all solutions are inserted to the archive, an emitter may adapt is

parameters to avoid generating solutions similar to those that have already been rejected by the

archive. Emitters in RIBS must implement two methods:

• The ask() method generates candidate solutions.

• The tell() method updates the internal states of the emitter based on the objective and

feature values of the generated solutions and any information gained from adding the solutions

to the archive.

Simple QD algorithms may implement emitters that do not require any internal states. For instance,

when ask() is called, MAP-Elites generates new solutions by sampling existing archive solutions

and perturbing them with isotropic Gaussian noise. Since there are no parameters to update for this

Gaussian noise mutation, the tell() method does not perform any operation.

Another example of a more complicated emitter is the CMA-ES [47] emitter from CMA-ME [44].

Here, the ask() method samples solutions from the multivariate Gaussian distribution maintained

by CMA-ES, and the tell() method updates the Gaussian distribution and internal CMA-ES

parameters as specified by the CMA-ES algorithm.

Scheduler. The scheduler facilitates the interaction between the archive and the population of

emitters. The scheduler adds the generated solutions from the emitters to the archive and passes the

results of the evaluation and archive insertion to the emitters. Moreover, the scheduler selects which

emitters generate new solutions on each iteration of the algorithm. Schedulers make decisions

on active emitters based on how well each emitter performs in previous iterations. While most

23

QD algorithms implements a basic scheduler that always activates all the emitters, Multi-Emitter

MAP-Elites [57] schedules the emitters using a multi-armed bandit algorithm. Ultimately, the

scheduler is the primary user interface in the RIBS framework.

Algorithm 1: Standard Execution Loop in RIBS
1 QD Algorithm (ne, nit):

Input: Number of emitters ne, number of iterations nit, parameters for Archive,
Emitters, and Scheduler

Result: Generates solutions to optimize the QD objective, stored in an Archive

2 Archive← init_archive()
3 [Emitter1 . . .Emitterne]← init_emitters(Archive)
4 Scheduler← init_scheduler(Archive, [Emitter1..Emitterne])
5 for itr ← 1 to nit do
6 L← Scheduler.ask()
7 User computes Evals = [f(θ),ϕ(θ) for θ in L]
8 Scheduler.tell(Evals)
9 return Archive

10 Scheduler.ask ():
Result: Returns a list of solutions L generated by the emitters.

11 L← [] // Empty list
12 for i← 1 to ne do
13 if Emitteri should generate solutions then
14 Li ← Emitteri.ask()
15 L← LLi // Concatenate Li to L

16 return L

17 Scheduler.tell (Evals):
Input: Objective and measure function evaluations of the list of solutions L.
Result: Inserts solutions into Archive and updates Emitters.

18 add_info← Archive.add(L, Evals)
19 for i← 1 to ne do
20 if Emitteri generated solutions then
21 Retrieve solutions Li generated by Emitteri

22 Retrieve Evalsi corresponding to Li

23 Retrieve add_infoi corresponding to Li

24 Emitteri.tell(Li, Evalsi, add_infoi)

Schedulers utilizes an ask-tell interface as shown in Algorithm 1. When ask() is called (line 10),

the scheduler selects one or more emitters and calls each emitter’s ask() method to generate

solutions. When tell() is called (line 17), the scheduler takes in the objective and feature function

evaluations of these solutions and add()’s the solutions to the archive. Then, the scheduler passes

24

Table 1: By selecting different components in the RIBS framework, we can compose a variety of recent algorithms
from the QD literature and test them in pyribs. Furthermore, we can identify combinations of components which may
lead to new algorithms. Adapted from [1].

Archive Emitters Scheduler

Grid CVT Sliding Boundaries Unstructured Gaussian Iso+LineDD CMA-ES Genetic Algorithm Gradient Arborescence Basic Bandit

MAP-Elites [48] ✕ ✕ ✕

CVT-MAP-Elites [50] ✕ ✕ ✕

Iso+LineDD MAP-Elites [49] ✕ ✕ ✕

MESB [58] ✕ ✕ ✕

NSLC [7] ✕ ✕ ✕

CMA-ME [44] ✕ ✕ ✕

CMA-MAE [46] ✕ ✕ ✕

ME-MAP-Elites [57] ✕ ✕ ✕ ✕

CMA-MEGA [11] ✕ ✕ ✕

CMA-MAEGA [46] ✕ ✕ ✕

the solutions, evaluations, and archive addition information to the emitters via each emitter’s

tell() method.

In the original emitter implementation [44], emitters directly called add() to insert solutions

into the archive. However, allowing emitters to modify the archive meant that feedback from

add() depended on the order in which emitters were called. This behavior was revised during

the development of pyribs. Now, although the emitters may read data from the archive (e.g., when

sampling solutions), only the scheduler calls add() and passes the returned information to the

emitters through their tell() method. Consequently, all emitters receive feedback from the same

version of the archive, making the algorithms invariant to the order in which the emitters operate.

5.3 Composing Algorithms in RIBS

Algorithm 1 shows a standard execution loop in RIBS. First, the user configures the core components.

Then, in the main loop (line 5), the user calls the scheduler’s ask-tell interface and evaluates solutions

in between the calls. Importantly, the RIBS components (archive, emitters, and scheduler) in this

loop are interchangeable, and the execution loop can be customized to support new QD algorithms.

Replacing components or modifying the execution loop enables RIBS to support a variety of QD

algorithms [1].

First consider algorithms that replace components of RIBS without modifying the standard execution

loop outlined in Algorithm 1. Tab. 1 summarizes the components required for each algorithm.

25

Throughout this section, components listed in Tab. 1 are italicized.

We begin with MAP-Elites [48], which has a Grid Archive that tessellates the feature space into a

grid. MAP-Elites incorporates a single emitter that randomly selects solutions from the archive and

applies mutations. One kind of mutation is to add Gaussian noise; in this case, we call the emitter

Gaussian Emitter. As is common in many versions of MAP-Elites, Gaussian Emitter can also

sample directly in the solution space on initial calls to ask(). Since this emitter has no adaptive

components, its tell() method does nothing. Finally, MAP-Elites has a Basic Scheduler that

simply selects this emitter on every iteration.

Replacing components creates different MAP-Elites variants. Substituting the Gaussian emitter

with the IsoLine+DD Emitter, which applies the Iso+LineDD operation [49], results in MAP-Elites

(Line). We can also replace the archive with a CVT Archive or Sliding Boundaries Archive to obtain

CVT-MAP-Elites [50] and MAP-Elites with Sliding Boundaries [58].

We can also consider methods based on Novelty Search like NSLC [7]. Here, the Unstructured

Archive adds solutions if they are far away from their k nearest neighbors in the archive. Meanwhile,

the Genetic Algorithm Emitter contains a genetic algorithm such as NEAT [59] that manages

a population of solutions. In contrast to Gaussian Emitter and IsoLine+DD Emitters, Genetic

Algorithm Emitter’s tell() updates its internal population. The scheduler remains the same as in

MAP-Elites.

CMA-ME [44] and CMA-MAE [46] are more complicated because they require managing multiple

instances of CMA-ES in parallel. In this case, we create multiple CMA-ES Emitters, each with

their own CMA-ES instance. Calling ask() on each emitter samples solutions from CMA-ES’s

multivariate Gaussian distribution, and calling tell() updates the distribution parameters and

the internal CMA-ES parameters. We combine these emitters with the Grid Archive and Basic

Scheduler from MAP-Elites.

Multi-Emitter MAP-Elites (ME-MAP-Elites) [57] provides an example of an algorithm that requires

a different scheduler. The default ME-MAP-Elites includes CMA-ES and Iso+LineDD Emitters. Its

26

Algorithm 2: QD Algorithm with Surrogate Model in RIBS
1 QD Algorithm with Surrogate Model (ne, ninner, nouter):

Input: Number of emitters ne, inner loop iterations ninner, outer loop iterations nouter,
parameters for Archive, Emitters, Scheduler, and Model

Result: Generates solutions to optimize the QD objective, stored in an Archive
2 Archive← init_archive()
3 Model ← init_surrogate_model()
4 D ← {} // Dataset of evaluated solutions
5 for itr ← 1..nouter do
6 // Construct surrogate archive.
7 Archive′ ← init_archive()
8 [Emitter′1..Emitter′ne

]← init_emitters(Archive′)
9 Scheduler′← init_scheduler(Archive′,

10 [Emitter′1..Emitter′ne
])

11 for iter ← 1..ninner do
12 L← Scheduler′.ask()
13 Evals′← [Model.f(θ),Model.m(θ) for θ in L]
14 Scheduler′.tell(Evals′)

15 // Record true evaluations of solutions.
16 L← all solutions in Archive′

17 User computes Evals = [f(θ),ϕ(θ) for θ in L]
18 Archive.add(L,Evals)
19 // Update model.
20 D ← D ∪ (L,Evals)
21 Train Model on data in D
22 return Archive

Bandit Scheduler applies a multi-armed bandit algorithm to select a subset of these emitters based

on whether they have previously generated solutions that were inserted into the archive.

In addition to replacing components of RIBS, some algorithms also modifies the RIBS execution

loop. For instance, CMA-MEGA [11] and CMA-MAEGA [46] both leverages the gradient arbores-

cence emitter, which constructs solutions by branching from a solution point based on the objective

and feature gradients. This branching requires calling ask() and tell() twice. The first time to

evaluate the gradients at a particular point, and a second time to generate solutions according to the

gradients. To support this behavior, add another set of calls to ask() and tell() in the loop on

line 5, with appropriate arguments to handle passing gradients back to tell().

27

A number of recent works [28, 30, 60, 61] integrate surrogate models with QD algorithms in domains

where evaluations are expensive. Surrogate-assisted QD algorithms construct an archive based on

evaluations predicted by a surrogate model and then select candidate solutions for ground-truth

evaluations [1]. Such models are beneficial when solution evaluations are expensive.

Algorithm 2 demonstrates a general layout for surrogate-assisted QD algorithms. In addition to the

standard QD ask-tell, the surrogate-assisted QD stores the solutions inside a ground-truth archive

(line 2). Then, during an “outer loop” (line 5), it performs three phases. First, it constructs a

surrogate archive in an “inner loop” (line 11) based on solutions evaluated by the model (line 13).

Second, the user evaluates the candidate solutions from the surrogate archive, and the evaluated

solutions are added into the ground-truth archive (line 18). Finally, the algorithm trains the model

to improve its predictions (line 21).

5.4 Comparison to Existing QD Libraries

It is important to compare and contrast pyribs to existing QD libraries to understand its advantages

and disadvantages. In this section, I will review existing QD libraries by outlining their main

features, strength, and weaknesses, and compare them to that of pyribs.

Sferesv2. Sferesv2 [52] is primarily a C++ framework for evolutionary computation, but it also

supports QD algorithms. Sferesv2 is primarily designed for high performance, leveraging template-

based meta-programming to provide an efficient object-oriented interface and offering multi-core

parallel execution through Intel TBB and MPI. While the template-based structure results in

significant performance benefits, it significantly limits the readability of the code for non-expert

users, which hinders its accessibility.

In comparison, pyribs focuses solely on QD algorithms rather than on general evolutionary computa-

tion. This means that the design and implementation decision of pyribs is more oriented towards QD

users. For instance, in addition to the algorithms supported by Sferesv2, pyribs supports CMA-ME

[44], CMA-MEGA [11], CMA-MAE [46], and Multi-Emitter MAP-Elites [57] (Tab. 1).

28

GridArchive CVTArchive SlidingBoundariesArchive Parallel Axes Plot

Figure 5: Pyribs visualization tools. This figures show example 2D heatmaps, where the axes correspond to the feature
values, and the color of each archive cell indicates its objective value. In SlidingBoundariesArchive, the points
show the locations of solutions in feature space, and the lines show the grid boundaries. We also show a parallel axes
plot which can visualize an archive of any dimensionality. In this plot, a single solution’s features are plotted as a line
connecting the feature ϕ1 . . .ϕk, and the line is colored according to the solution’s objective value. Adapted from [1].

pyribs is a Python library that emphasizes accessibility over performance. While Python itself is

slower than lower-level languages like C++, Python libraries like NumPy [55] reduces the profor-

mance gap between Python and C++ significantly by providing efficient numerical computation

routines. Moreover, beyond being a beginner-friendly language, it has a flourishing ecosystem, with

package repositories like the Python Package Index (PyPI) [62] and Anaconda [63] providing easy

access to many useful libraries. Thus, implementing the RIBS framework in Python and distributing

pyribs on PyPI and Anaconda makes pyribs accessible, as users can easily install and learn to use

the library.

QDpy. QDpy [53] is designed to be a feature-rich Python library for QD optimization. Besides

supporting ready-to-go implementations of algorithms such as MAP-Elites and CMA-ME, QDpy

provides building blocks that can be assembled into new algorithms. To run a QD algorithm, a

QDpy user instantiates a container (i.e., an archive) and passes it to an algorithm object. The user

then defines an evaluation function and passes the function to the QDpy system to optimize. QDpy

also provides logging and plotting utilities and tools to run the evaluation function on distributed

computation.

QDpy’s flexibility is limited by the requirement that users pass in an evaluation function. It is

important to note that after passing in the evaluation function, QDpy completely takes over the

evaluation and optimization process, with little user intervention possible. Thus, while passing

29

Upgrading CMA-ME to
CMA-MAE on the

Sphere Benchmark

Using CMA-ME to Land
a Lunar Lander Like

a Space Shuttle

Generating Tom Cruise
Images with Differentiable

Quality Diversity

Illuminating the
Latent Space

of an MNIST GAN

Learning a Repertoire
of Robot Arm

Configurations

Generating Images
to Fool an

MNIST Classifier

Figure 6: Tutorials enable pyribs users to quickly learn about the library and experiment with problems from the QD
literature. Adapted from [1].

in this function allows users to leverage QDpy’s various utilities, this requirement also makes

it difficult for users to modify the evaluation loop. In contrast, pyribs provides an ask-tell

interface where users handle evaluations on their own. Essentially, pyribs focuses on components

necessary for running QD algorithms, allowing users to integrate tools and frameworks with which

they are already familiar.

To make pyribs more accessible, pyribs implemented visualization methods for archives following

QDpy [1]. As shown in Fig. 5, pyribs can visualize two-dimensional archives as heatmaps and

display parallel axes plots that visualize archives of any dimensionality. The easily accessible

visualization not only helps researchers debug and understand their algorithm but also fosters a

more thorough understanding of QD among learners.

To furether increase accessibility, pyribs maintains extensive documentation and tutorials. Every

pyribs component is documented in detail, and pyribs has an array of tutorials (Fig. 6). These

tutorials teach users about the library and introduce them to common QD problems, such as latent

space illumination [26], the arm repertoire benchmark [49, 64], and the sphere linear projection

benchmark [44]. The documentation and tutorials are easily accessible online on the website for

pyribs.

I was the primary author on the tutorial “Upgrading CMA-ME to CMA-MAE on the Sphere

Benchmark” [65]. This tutorial introduced the readers to the sphere linear projection benchmark,

and demonstrates how the changes between CMA-ME [44] and CMA-MAE [46] greatly improves

the performance of the algorithm on the sphere benchmark. Importantly, this tutorial teaches the

30

users how to use pyribs to implement CMA-MAE, which is currently one of the most effective

general-purpose QD algorithm.

QDax. QDax [54] is a recent library that was developed after the initial release of pyribs. The library

focuses on efficient QD, reinforcement learning (RL), and evolutionary algorithm implementations

for hardware accelerators such as GPUs and TPUs, taking advantage of the parallel nature of these

methods. QDax specializes in reinforcement learning and robotics domains, where evaluation

remains an expensive bottleneck. Many experiments that took hours or days on a CPU cluster take

only minutes with GPU acceleration in QDax. To leverage accelerators in both function evaluation

and algorithm implementation, QDax builds on the JAX library [56] and provides a JAX-based API.

In the spirit of simplicity and accessibility, pyribs only runs single-threaded on a single CPU

[1], despite QDax providing parallelization utilities for both function evaluation and algorithm

implemention. Nevertheless, single-threaded libraries has the advantage of being able running on

any hardware ranging from laptops to high-performance clusters, since it does not require heavy

computation resources. This make pyribs more accessible to people who have limited computation

resources.

While being single-threaded may limit the performance of the algorithms implemented in pyribs,

the runtime in many QD problems, such as Deceptive Maze, is dominated by the user’s evaluation

of solutions, rather than by the runtime of the QD algorithm in pyribs. Since evaluations are

independent from the algorithm, the evaluations may be parallelized individually. For instance,

a pyribs tutorial “Using CMA-ME to Land a Lunar Lander Like a Space Shuttle” parallelizes

evaluations with a few lines of changes with Python’s Dask library [10]. Thus, pyribs maintains its

stance as a simple library that only supports what it needs.

5.5 Summary

In the future, I will continue to develop pyribs with my colleagues at the ICAROS lab. In the

long run, our goal is for pyribs to become a library that supports a wide range of users in the

31

QD community. To this end, we will continue to maintain our documentation and tutorials and

incorporate user feedback in our implementation decisions. Our vision is that pyribs will become

an entry point into QD for many researchers.

We also aim to serve the needs of more experienced researchers by further expanding the capabilities

of pyribs. We plan to expand pyribs to implement components from other recent and popular QD

algorithms. For example, although pyribs currently centers on the MAP-Elites family, potential

additions outside this family include the unstructured archive from Novelty Search, the archive with

learned measures from AURORA [66], and emitters and schedulers from NS-ES [20] and SERENE

[67]. Our future plan for pyribs will support these algorithm.

Beyond directly supporting practitioners, the lessons learned from the development of pyribs can

inform the design and development of future QD libraries. I am excited about the role that pyribs

can play in expanding the QD community and growing QD into a widely adopted discipline.

32

6 Density Descent in Diversity Optimization

I propose Density Descent Search (DDS), a DO algorithm that efficiently explores the feature space

by leveraging continuous density estimates. The key insight is to overcome the drawbacks of current

density estimation methods in DO by introducing continuous, stable approximations of the solution

density in feature space [2]. Through both empirical (Sec. 6.5) and theoretical analysis (Sec. 6.3), I

demonstrated that:

• When combined with a ranking-based optimizer like CMA-ES, NS reduces to a special case

of DDS.

• KDE provides stronger algorithmic stability guarantees than novelty score.

• DDS algorithms outperform prior work on 3 out of 4 domains.

• DDS perform well on multi-dimensional feature spaces, which currently present significant

challenges to QD and DO algorithms.

6.1 Density Estimation Methods

DDS utilizes two density estimation methods: kernel density estimation and continuous normalizing

flow. In contrast to histograms, these two methods of density estimation are continuous. In the case

of kernel density estimation, it also provides a stronger uniform stability bound than novelty search.

In general, DDS can be combined with any density estimation method. According to our analysis,

any continuous density estimation method should achieve notable performance when combined

with DDS [2].

Kernel Density Estimation (KDE). KDE is a non-parametric density estimation method, meaning

that it does not make any assumptions about the underlying probability density distribution from

which the samples are drawn [68]. The benefit of a non-parametric method is that it can be utilized

in settings where nothing about the underlying distribution is known. Given a set of features

33

Figure 7: The effect of the bandwidth h on a one-dimensional KDE. Red dots represent the data, and black lines depict
the KDE. When h is too small, the KDE reveals many misleading local maxima. When h is too large, the KDE conceals
modes from the underlying distribution. Figure adapted from [2]

X ⊆ Rm, bandwidth parameter h, and kernel function K(·), KDE computes the density function

D̂ : Rm → R for a given feature y ∈ Rm as:

D̂h(y;X) =
1

|X |h
∑
y′∈X

K

(
∥y − y′∥

h

)
(3)

Prior work has thoroughly studied the problem of selecting bandwidth that accurately estimate the

underlying density function [69–71]. The effect that the bandwidth has on the density estimate

is visualized in Fig. 7. For this work, I discovered that DDS works better when the bandwidth is

slightly over-smoothed.

When optimizing a density estimate (e.g., with gradient descent), KDEs have several advantages

over histograms. First, the shape of a histogram depends on its bin size [72]. Second, the binning

procedure leads to a discontinuous optimization landscape and flat gradient signals inside each bin

[72]. In contrast, KDE produces a density function that is smooth and continuous based on the

location of the samples in the underlying distribution [68].

Continuous Normalizing Flow (CNF). CNF [73] is a generative modeling method that constructs

a diffusion path between a simple, usually parameterized distribution (e.g., a Gaussian distribution)

34

Sample solutions

Adapt
with CMA-ES

 Evaluate
features

Rank solutions
by density

Record solutions in
passive archive

Update buffer
of features

Figure 8: Overview of density descent search (DDS) for solving diversity optimization (DO) problems. DDS first
draws solutions from a Gaussian N (µ,Σ). After computing the solution features (in this case, the final position of the
robot in a maze), DDS ranks solutions by density. This density ranking is passed to CMA-ES, which updates the search
distribution to sample solutions with lower density on the next iteration. Concurrently, solutions are stored in a buffer
that forms the basis for density estimates, and in a passive archive that tracks all discovered solutions. Adapted from [2].

and an unknown complex distribution. The diffusion path describes a mapping from each point

on the simple distribution to a corresponding point on the unknown distribution such that their

probability densities (computed via the Wasserstein metric) are roughly equal. CNF utilizes the

diffusion path to transform samples from the simple distribution to a sample from the complex

distribution. This enable sampling from probability distributions where direct sampling is difficult

(e.g., distributions of images).

Although CNF is has been developed for generative artificial intelligence, in this work [2], I only

utilize CNF as a method to estimate the probability density of the feature space.

6.2 Algorithmic Details

DDS maintains a buffer of features B that represents the distribution of features discovered so far.

Based on this buffer, DDS models a density estimation of the feature distribution, and by querying

this density model, DDS guides an adaptive optimizer to discover solutions in less-dense areas of

feature space. As it searches for these solutions, DDS expands the discovered set of features. The

35

intuition for DDS is that by always greedily seeking to explore areas that has not been explored

very well, which is indicated by its low density, the algorithm will eventually explore everywhere in

the space. An overview of the algorithm is illustrated in Fig. 8.

Density Estimation. The core of DDS is its representation of feature space density. We propose two

variants of DDS that differ in their density representation. The first variant, DDS-KDE, represents

density with KDE. With KDE, we compute density via Eq. 3, with X set to the buffer of features B.

The second variant, DDS-CNF, estimates the density in feature space by learning a CNF between

the standard normal distribution N (0, I) and the observed feature space distribution. Similar to

DDS-KDE, the feature space distribution is represented by the buffer B. We compute a density

estimate at any location in the feature space by integrating an ordinary differential equation [73].

Applying techniques from prior work [73], we represent the CNF with a neural network, and on

each iteration, we fine-tune the network on the new distribution of features contained in the buffer.

KDE and CNF differ in how easily their smoothness can be controlled. On one hand, the shape of

the KDE can be controlled with the bandwidth hyperparameter, where higher bandwidth leads to a

smoother density estimate but conceals modes of the ground-truth density distribution, as illustrated

in Fig. 7. On the other hand, while CNF does not require selecting a bandwidth hyperparameter, the

smoothness of the density estimation cannot be easily controlled, which undermines the performance

of the algorithm (Sec. 6.5.3). The effect of the bandwidth parameter on the performance of DDS-

KDE is discussed more thoroughly in Sec. 6.3.

Feature Buffer. To provide the basis for density estimates in feature space, DDS maintains a

buffer B that stores the features of sampled solutions (line 4). This buffer represents the observed

distribution of the feature space and is updated every time new solutions and features are discovered.

In theory, the buffer can have infinite capacity, storing every feature ever encountered. In practice,

the buffer can only retain a finite number of features due to computation and memory limitations.

To decide which features to retain in the buffer, we manage the buffer with an optimal reservoir

sampling algorithm (Sec. 6.4). This algorithm updates the buffer with online samples that accurately

36

represent the distribution of features discovered so far by DDS (line 11).

Optimizer. DDS guides an adaptive optimizer to discover solutions in low-density regions of the

feature space. Examples of such optimizers include xNES [74] and Adam [75]. I selected CMA-ES

as the underlying optimizer due to its reputation as a state-of-the-art optimizer [47] and its high

performance in existing QD algorithms [11, 44, 46].

Passive Archive. Following prior work [76], to evaluate how much of the feature space has been

explored, DDS inserts all discovered solutions and features into a passive MAP-Elites-style (Sec. 4)

archive A (line 3, line 10). While DDS itself only uses the archive to record solutions and features,

the archive is useful when computing metrics in experiments and when comparing archive-based

algorithms with archive-less algorithms (Sec. 6.5.1).

Summary. Algorithm 3 shows how the components of DDS come together. DDS begins by

initializing its various components (line 2-4). During the main loop (line 5), DDS samples solutions

with the underlying optimizer (line 7). Since our optimizer is CMA-ES, sampling consists of

drawing from a multivariate Gaussian N (µ,Σ). Subsequently, DDS computes the features of the

solutions (line 8) and estimates their feature space density (line 9). After sampling solutions, DDS

updates its various components. For instance, in DDS-KDE, the density update (line 12) consists of

replacing the feature buffer, and in DDS-CNF, the update involves fine-tuning the neural network

on the feature buffer. Furthermore, solutions with lower density are ranked first on line 13, causing

CMA-ES to adapt (line 14) towards less-dense regions of the feature space.

6.3 Connection between Novelty Search and Kernel Density Estimates

I further provide theoretical insight into the connection between NS and DDS-KDE and delineate

the advantage of KDE over novelty score. KDE and novelty score are non-stationary since they

change as more solutions are discovered by their respective optimizers. However, the magnitude of

non-stationarity is different in KDE and novelty score (Theorem 6.2, Theorem 6.3). Furthermore,

when k ≥ |B| in the k-nearest neighbor calculation for novelty score, novelty search becomes a

37

Algorithm 3: Density Descent Search (DDS)
1 DDS (ϕ(·), density, b,N, λ,µ0, σ):

Input: Feature function ϕ(·), density estimator object density, buffer size b, number of
iterations N , batch size λ, initial solution µ0, and initial step size σ

Result: Generates N · λ solutions, storing a representative subset of them in a passive
archive A.

2 Initialize CMA-ES search point µ := µ0, search direction Σ = σI , and internal parameters
p

3 Initialize empty archive A
4 Initialize empty buffer B of size b
5 for itr ← 1 to N do
6 for i← 1 to λ do
7 θi ∼ N (µ,Σ)
8 ϕi ← ϕ(θi)
9 Di ← density(ϕi)

10 Add (θi,ϕi) to archive A
11 Update buffer B with ϕ1..λ via reservoir sampling
12 Update density with the new buffer B
13 Rank θi in ascending order by Di

14 Adapt CMA-ES parameters µ,Σ,p based on density ranking Di

special case of DDS-KDE (Theorem 6.4). All theorems and proofs can be found in Appendix B.

6.3.1 Stability Under Non-stationarity

DO algorithms gradually learn a non-stationary density representation (e.g., KDE or histogram)

as they explore the feature space [2]. This means that they maintain a density function over the

feature space that changes every time a new solution is discovered. However, drastic changes in the

representation may present significant challenges for adaptive optimizers such as Adam [75] and

CMA-ES [47]. This is because adaptive optimizers gradually adapts their parameters according

to the density function that the DO algorithm maintains. Thus, if the density function changes too

drastically, then the adaptive optimizer will not be able to adapt fast enough to account for the

changes in the optimization landscape.

To characterize the extent of change in the density estimate, I appeal to the notion of uniform

stability [77], defined as follows:

38

Definition 6.1. Let a function F (x;B) : Rd → R be parameterized by a set B ∈ Rd. We say that F

is ϵ-uniformly stable if for all B,B′ ⊆ Rd, where B and B′ differ by at most one element, we have

sup
x∈Rd

|F (x;B)− F (x;B′)| ≤ ϵ (4)

I proved that KDE has uniform stability directly proportional to the size of its feature buffer and

bandwidth:

Theorem 6.2. A kernel density estimate D̂h(x;B) managed with reservoir sampling, such that

features in the buffer are exchanged one at a time, is 1
|B|h -uniformly stable, where h is the bandwidth.

Higher bandwidth makes the function more stationary and thus more suited for adaptive optimizers.

However, higher bandwidth also leads to over-smoothing of the density estimate, which conceals

modes of the true density function [68] (Fig. 7). Thus, selecting an optimal bandwidth for DDS

requires a fine balance between the accuracy and uniform stability of the KDE.

In contrast, novelty score becomes less uniformly stable as the diameter of the feature space W

increases:

Theorem 6.3. Novelty score ρ(x;B) is W
k

-uniformly stable, where k is the nearest neighbors

parameter in novelty score and W = maxs1,s2∈S∥s1 − s2∥ is the diameter of the feature space S.

Therefore, for unbounded feature spaces, the uniform stability of novelty score is also unbounded,

and for bounded feature spaces, novelty score has uniform stability directly proportional to k.

When the feature space is bounded, as in the experiments, KDE has a stronger stability guarantee

than novelty score for bandwidth h ≥ k
|B| . Following this insight, we select a bandwidth satisfying

this inequality with the bandwidth selection mechanism in Sec. 6.6. Our theoretical results are

corroborated by our experiments in Sec. 6.5, which demonstrate that DDS-KDE outperforms NS in

all domains on all metrics.

39

6.3.2 Equivalence of NS and DDS-KDE

When h = 1 and as k → |B|, the uniform stability upper-bound of novelty score approaches that of

KDE. I show in Theorem 6.4 that when all points are considered in the novelty score computation

(i.e., let k = ∞), NS is a special case of DDS-KDE under ranking-based optimizers such as

CMA-ES. Specifically, under these conditions, the ranking of solutions based on their novelty score

is identical to the ranking based on their kernel density estimate.

Theorem 6.4. Let B ⊆ Rm be a set of features. Consider the rankings πNS and πKDE on another set

of features {ϕ1, . . . ,ϕm} ⊆ Rm where ϕi = ϕ(θi). We define the rankings as follows: πNS(i) ≥

πNS(j) ⇐⇒ ρ(ϕi;B) ≥ ρ(ϕj;B) and πKDE(i) ≥ πKDE(j) ⇐⇒ D̂(ϕi;B) ≤ D̂(ϕj;B). We

show that πNS = πKDE , when NS has k =∞ (or, equivalently, k = |B|) and KDE has triangular

kernel K(u) = 1− |u| with support over the entire feature space S.

6.4 Reservoir Sampling for Maintaining a Representative Buffer

As outlined in Sec. 6, DDS maintains a buffer B that stores the features of sampled solutions. While

it would be ideal to maintain an infinite buffer that stores all features ever encountered, due to

runtime and memory constraints, DDS instead maintains a finite-sized buffer B of size |B| = b.

Moreover, the subset of features retained by B must accurately represent all the features ever

encountered. This can be described as the reservoir sampling problem.

Problem 6.1 (Reservoir Sampling [78]). Suppose there is a finite population of unknown size N .

Derive an algorithm that draws a simple random sample of size b from this population by scanning

it exactly once, with the memory constraint such that the algorithm can remember at most b samples

at a time.

The population consists of the features that are discovered by DDS throughout its entire execution.

Since the buffer B is a simple random sample of all features, the density function estimated on B

will be close to the density function of all features. Thus, with reservoir sampling, we are only

40

required to maintain a subset of all discovered features without severely altering the shape of the

density estimation of the feature space. In DDS, this is achieved by leveraging algorithm L, the

optimal reservoir sampling algorithm [78].

I originally used a naïve algorithm that constructed a representative buffer Bb by sampling b solutions

from BN without replacement. This algorithm permutes BN uniformly at random and selects the

first b solutions. Eq. 5 calculates P (ai) =
b
N

, the probability that solution θi is added to buffer Bb.

P (ai) =

(
N−1
b−1

)(
N
b

) =

(N−1)!
(b−1)!(N−b)!

N !
b!(N−b)!

=
b!(N − 1)!(N − b)!

N !(b− 1)!(N − b)!
=

b

N
(5)

However, soon I realized that this approach is not feasible, as this requires that the algorithm stores

every single solution it comes across in the global buffer BN . Therefore, I switched to using the

reservoir sampling algorithm in [78].

6.5 Experiments

I compared the performance of DDS-KDE and DDS-CNF with the QD algorithms MAP-Elites

(line),2 CMA-ME, and CMA-MAE, and with NS using CMA-ES as the underlying optimizer [2].

All algorithms and domains are implemented with pyribs [1].

My experiments include canonical benchmark domains from QD and DO: Linear Projection [44],

Arm Repertoire [49], and Deceptive Maze [3]. As discussed in Sec. 3, we convert QD domains into

DO domains by setting the objective to be constant, effectively removing the importance of solution

quality. The Deceptive Maze domain is implemented with the Kheperax library [79]. Furthermore,

to address the challenges posed by high-dimensional feature spaces, I introduced a new domain,

Multi-feature Linear Projection, that generalizes Linear Projection to high-dimensional feature

spaces [2].

I completed the experimental design, domain and algorithm implementation, data collection, and

2MAP-Elites with the Iso+LineDD operator.

41

analysis. The description of the experimental design, domain details, and results is based on my

paper [2]. All experiments run on a 128-core workstation with an NVIDIA RTX A6000 GPU.

As pyribs is a single-threaded library (Sec. 5.4), we only use the GPU for training the CNF in

DDS-CNF and for evaluating the Deceptive Maze domain.

6.5.1 Experimental Design

Independent Variable. In each domain, I conducted a between-groups study with the algorithm as

the independent variable.

Dependent Variables. I computed the archive coverage as the number of occupied cells in the

archive divided by the total number of cells. To compare the coverage of archive-based algorithms

(CMA-MAE, CMA-ME, and MAP-Elites) with that of archive-less algorithms (DDS-KDE, DDS-

CNF, and NS), the coverage of all algorithms are tracked on a passive archive A tessellated by a

100× 100 grid.

For the high-dimensional feature space experiment, the coverage is computed with a centroidal

Voronoi tessellation with 10,000 cells [50]. This is because when the number of cells in a grid

scales exponentially with the dimension of the feature space (curse of dimensionality) [50]. Thus,

it is unfeasible to compute a solution for every single cell on a grid in high-dimensional feature

space. Centroidal Voronoi tessellation can fix the total number of cells, so the maximum number of

solutions stored in the archive will be reasonable. However, this does mean that every cell in the

centroidal Voronoi tessellation takes up more volume in the feature space than a grid cell.

Following prior work [80], we also assess the ability of each algorithm to uniformly explore the

feature space. We measure the cross-entropy between a uniform distribution and the distribution of

sampled features. Let Ne be the frequency that a solution were discovered in cell e ∈ {1, . . . , l} in

the passive archive, and Ntotal =
∑l

e=1 Ne. The cross-entropy score is defined as:

CE = −
l∑

e=1

1

l
log

(
Ne

Ntotal

)
(6)

42

CE achieves its minimum value when Ne is uniformly distributed for all cells e. For all passive

archives in our experiments, this minimum is 9.21 for l = 10,000 cells.

6.5.2 Domain Details

Linear Projection (LP). LP is a QD domain where ϕ induces high distortion by mapping an

n-dimensional solution space to a 2D feature space [44]. A harsh penalty is applied outside

the bounds of the feature space to hinder exploration near the bounds. The feature function

ϕ : Rn →
[
−5.12 · n

2
, 5.12 · n

2

]2 is defined as:

ϕ(θ) =

 n
2∑

i=1

clip(θi),
n∑

i=n
2
+1

clip(θi)

 (7)

clip(θi) =


θi if |θi| ≤ 5.12

5.12/θi otherwise
(8)

where θi is the ith component of θ, and we assume that n is divisible by 2. ϕ(θ) applies clip(·) to

each θi and sums the two halves of θ. Since clip(θi) restricts θi to the interval [−5.12, 5.12], ϕ(θ)

is bounded by the closed interval
[
−5.12 · n

2
, 5.12 · n

2

]2.

For DO experiments, we set the objective function f(θ) = 1. Following prior work [11, 46], we let

the solution dimension be n = 100.

Arm Repertoire. The goal of Arm Repertoire [49, 64] is to search for a diverse collection of arm

positions for a planar robotic arm with n revolving joints. In this domain, θ ∈ [−π, π]n represents

the angles of the n joints, and ϕ(θ) computes the (x, y) position of the arm’s end-effector using

forward kinematics. While all other domains in this paper have a maximum of 100% coverage, Arm

Repertoire only has a maximum coverage of 80.24% when using a 100 × 100 grid archive [46],

since the arm can only move in a circle of radius n. This is because while the passive archive covers

a square area in the feature space, the arm can only reach a portion of that area. Similar to LP, we

set f(θ) = 1 and n = 100.

43

Figure 9: An example of an arm configuration for the Arm Repertoire domain. Note that while this arm has only 12
degrees of freedom, the arms in the experiments of this thesis has 100 degrees of freedom. Figure adapted from [81].

Deceptive Maze. Deceptive Maze is a DO domain that challenges the algorithm to discover a diverse

set of final positions for robots navigating a maze (Fig. 1a) [3]. In this domain, θ parameterizes the

robot’s neural network controller. ϕ(θ) is the final position of the robot after evaluating its path in

the maze. As this is a DO domain, this has no objective function. In our experiments, the neural

network is a MLP with n = 66 parameters.

Multi-feature Linear Projection (Multi-feature LP). We introduce a generalized version of LP

that scales to m-dimensional feature spaces. The feature function ϕ : Rn →
[
−5.12 · n

m
, 5.12 · n

m

]m
is defined as

ϕ(θ) =

 (j+1)n
m∑

i= jn
m

+1

clip(θi) : j ∈ {0, . . . ,m}

 (9)

where we assume that n is divisible by m. When m = 2, this domain turns into the classical LP

domain, as evident by Eq. 7. The experiments selects n = 100 and m = 10 for this domain.

6.5.3 Statistical Analysis

Fig. 10 shows the mean coverage and cross-entropy over 10 trials. In each domain, we conducted a

one-way ANOVA to check if the algorithms differed in their coverage and cross-entropy. Since all

ANOVAs were significant (p < 0.001), as shown in Tab. 2, I followed up with pairwise comparisons

44

0

50

100

C
ov

er
ag

e

LP

0

50

100
Arm Repertoire

0

50

100
Deceptive Maze

0

20

40

60
Multi-feature LP

0 2500 5000
Iterations

10

20

30

C
ro

ss
-E

nt
ro

py

0 2500 5000
Iterations

10

20

30

0 2500 5000
Iterations

10

20

30

0 2500 5000
Iterations

20

25

30

DDS-KDE DDS-CNF NS CMA-MAE CMA-ME MAP-Elites (line)

LP Arm Repertoire Deceptive Maze Multi-feature LP

Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy

DDS-KDE 67.67 ±2.13% 17.57 ±0.41 80.22 ±0.01% 14.14 ±0.02 94.93 ±0.84% 11.84 ±0.21 50.22 ±0.45% 22.20 ±0.09
DDS-CNF 63.65 ±1.38% 18.50 ±0.29 79.82 ±0.19% 13.48 ±0.12 85.17 ±2.28% 14.01 ±0.38 16.57 ±0.22% 28.07 ±0.03
NS 22.96 ±1.59% 24.78 ±0.06 78.67 ±0.23% 15.32 ±0.07 77.70 ±2.47% 15.78 ±0.50 10.36 ±0.16% 28.39 ±0.03
CMA-MAE 56.47 ±1.06% 19.09 ±0.23 77.77 ±0.10% 13.14 ±0.01 98.83 ±0.18% 10.55 ±0.06 11.68 ±0.37% 29.06 ±0.06
CMA-ME 42.90 ±0.25% 22.45 ±0.05 39.29 ±0.24% 20.13 ±0.09 79.97 ±2.17% 15.33 ±0.39 0.56 ±0.14% 28.10 ±0.28
MAP-Elites (line) 42.30 ±0.31% 22.43 ±0.07 74.62 ±0.07% 13.60 ±0.01 90.32 ±0.87% 13.28 ±0.16 6.28 ±0.34% 29.61 ±0.02

Figure 10: Coverage and cross-entropy (CE) after 5,000 iterations of each algorithm in all domains. We report the
mean over 10 trials, with error bars showing the standard error of the mean. Higher coverage and lower cross-entropy
are better.

via Tukey’s HSD test (Appendix A).

Table 2: One-way ANOVA results in each domain. All p-values are less than 0.001.

Coverage Cross-Entropy

LP F (5, 54) = 206.61 F (5, 54) = 156.04
Arm Repertoire F (5, 54) = 9691.05 F (5, 54) = 1523.35
Deceptive Maze F (5, 54) = 23.89 F (5, 54) = 39.33
Multi-feature LP F (5, 54) = 3350 F (5, 54) = 466.49

Coverage. DDS-KDE and DDS-CNF outperform all baselines on LP, Arm Repertoire, and Multi-

feature LP. They exhibit no statistical difference in performance with the best-performing algorithm

on Deceptive Maze (CMA-MAE). Notably, DDS-KDE solves Arm Repertoire nearly perfectly, as

the maximum coverage in the domain is 80.24%.

The high coverage of DDS-KDE and DDS-CNF on these domains can be attributed to the continuity

of their density estimate, which prevents DDS-KDE from converging prematurely. For example, on

LP, our algorithms discover more solutions near the edges of the feature space than CMA-MAE [2].

The passive archive maintained by CMA-MAE converges as all the solutions fall into previously

discovered cells [44]. In contrast, the continuity of our density estimate and the online buffer updates

45

facilitate DDS algorithms to achieve slow but continual progress in exploring the feature space

(Fig. 10, LP and Arm Repertoire). This is because the shape of the continuous density estimate

always changes slightly after each iteration of the algorithm. Therefore, the adaptive optimizer

CMA-ES always gets some signal to move away from the dense regions in feature space.

For multi-feature LP, we observe that algorithms leveraging continuous representations of the

feature space, i.e., DDS and NS, explore the feature space much faster than other algorithms driven

by discrete feature space representations, e.g., CMA-MAE (Fig. 10). This is because CMA-MAE is

optimizing on a centroidal Voronoi tessellation with 10,000 cells, where each cell has significantly

more volume compared to that of a 100×100 grid due to the increased dimensionality of the feature

space. Hence, more solutions map to the same cells, making it more difficult to find solutions

outside of previously explored cells.

A similar phenomenon was observed in prior work when increasing the dimensionality of the

solution space in the LP domain [46]. Increased solution dimensionality more heavily distorts the

feature mapping and, similarly, causes most solutions to fall in the same cells of the feature space.

Consequently, the LP domain becomes exceptionally challenging for QD algorithms working with

a tessellation (like CMA-MAE), as there is insufficient signal to drive the algorithm towards the

boundaries of the feature space.

DDS-KDE overcomes this drawback of utilizing tessellations with its continuous density estimation

of the feature space. While in tesselation-based algorithms, solutions will fall into the same cell,

DDS-KDE will retain the solutions in its buffer, which generates signal to drive the search towards

the feature space boundaries. Thus, DDS-KDE is more resilient to the distortions of the feature

mapping and can better scale with the dimensionality of the feature space.

Cross-Entropy. DDS-KDE and DDS-CNF outperform3 all baselines in LP, with the exception of

DDS-CNF, whose performance is not significantly different from CMA-MAE. On Arm Repertoire

and Deceptive Maze, DDS-KDE and DDS-CNF outperform NS. However, while DDS-KDE is on

3Recall that lower CE is better as it indicates a more uniform exploration of the feature space (Sec. 6.5.1)

46

par with CMA-MAE on Arm Repertoire , CMA-MAE outperforms DDS-KDE on Deceptive Maze

and DDS-CNF on both Arm Repertoire and Deceptive Maze. Finally, DDS-KDE outperforms all

algorithms on Multi-feature LP, while DDS-CNF outperforms CMA-MAE and MAP-Elites (line).

We attribute the improved performance of CMA-MAE to the nature of the cross-entropy metric.

Cross-entropy is intended to approximate the distributional similarity between the exploration of

the feature space and the uniform distribution. CMA-MAE directly optimizes a passive archive

with uniform tessellation, unlike DDS and NS, which are agnostic to the passive archive. This

experimental setup naturally favors CMA-MAE with respect to the cross-entropy metric.

DDS-KDE performs as well as DDS-CNF in terms of coverage and cross-entropy across most

domains. However, on Multi-feature LP, DDS-KDE outperforms DDS-CNF on both metrics; on LP

and Deceptive Maze, DDS-KDE outperforms DDS-CNF in terms of cross-entropy.

We attribute the difference between the performance of DDS-KDE and DDS-CNF to the bandwidth

parameter in KDE, which allows us to adjust the smoothness of the KDE (Fig. 7). On the other

hand, CNF lacks explicit control over its smoothness. Thus, while we adjust the smoothness of the

KDE to improve performance for DDS-KDE (Sec. 6.3), we can not apply the same techniques to

boost the performance of DDS-CNF.

6.6 Bandwidth Selection for DDS-KDE

The bandwidth parameter h in KDE controls the smoothness of the estimation (Fig. 7). While prior

work [69–71] has developed bandwidth selection methods for accurate density estimations, our

theoretical results show that the optimal bandwidth for DDS-KDE may require an over-smoothing

of the KDE (Sec. 6.3).

To examine the effect of the bandwidth parameter on the performance of DDS-KDE, we perform

ablation experiments on LP, Arm Repertoire, and Deceptive Maze. While applying the same

hyperparameters as the experiments in Sec. 6.5, I vary the bandwidth h in the interval (0,W], where

W is the bound of the feature space defined for each domain (Sec. 6.5.2). For instance, in the LP

47

0

25

50

75

100
C

ov
er

ag
e

LP

0

25

50

75

100
Arm Repertoire

0

25

50

75

100
Deceptive Maze

0

25

50

75

100
Multi-feature LP

0.00 0.25 0.50 0.75 1.00
Bandwidth

10

15

20

25

30

C
ro

ss
-E

nt
ro

py

0.00 0.25 0.50 0.75 1.00
Bandwidth

10

15

20

25

30

0.00 0.25 0.50 0.75 1.00
Bandwidth

10

15

20

25

30

0.00 0.25 0.50 0.75 1.00
Bandwidth

10

15

20

25

30

LP Arm Repertoire Deceptive Maze Multi-feature LP

Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy

h0 = 0.01 44.57 ±0.75% 21.99 ±0.14 75.75 ±1.06% 15.07 ±0.22 94.93 ±0.84% 11.84 ±0.21 9.50 ±0.15% 29.33 ±0.02
h0 = 0.035 64.00 ±1.82% 18.10 ±0.37 79.84 ±0.20% 14.39 ±0.09 92.22 ±1.44% 12.56 ±0.37 33.17 ±0.26% 25.57 ±0.05
h0 = 0.05 67.67 ±2.13% 17.57 ±0.41 80.22 ±0.01% 14.14 ±0.02 87.70 ±1.60% 13.98 ±0.35 50.22 ±0.45% 22.20 ±0.09
h0 = 0.1 52.41 ±1.18% 20.75 ±0.22 80.20 ±0.01% 14.14 ±0.04 69.63 ±8.59% 17.60 ±1.69 43.61 ±0.81% 23.13 ±0.15
h0 = 0.2 41.90 ±1.69% 22.50 ±0.33 80.15 ±0.00% 13.99 ±0.02 57.95 ±5.43% 20.41 ±1.03 14.88 ±0.18% 28.08 ±0.02
h0 = 0.3 43.48 ±1.79% 22.22 ±0.32 80.10 ±0.01% 14.01 ±0.02 41.98 ±5.51% 23.54 ±0.98 9.53 ±0.12% 27.97 ±0.03
h0 = 0.4 39.37 ±2.00% 22.92 ±0.40 80.10 ±0.01% 14.00 ±0.01 29.77 ±2.80% 25.81 ±0.47 9.24 ±0.09% 27.78 ±0.03
h0 = 0.5 35.74 ±1.49% 23.68 ±0.28 80.09 ±0.00% 13.99 ±0.02 27.90 ±2.12% 26.14 ±0.37 9.39 ±0.19% 27.74 ±0.04
h0 = 0.6 33.19 ±2.39% 24.17 ±0.44 80.10 ±0.01% 13.99 ±0.01 25.04 ±0.24% 26.63 ±0.03 9.42 ±0.11% 27.78 ±0.02
h0 = 0.7 36.20 ±1.31% 23.52 ±0.28 80.09 ±0.01% 13.99 ±0.01 30.23 ±4.19% 25.73 ±0.77 9.02 ±0.16% 27.78 ±0.03
h0 = 0.8 31.35 ±2.65% 24.46 ±0.54 80.09 ±0.00% 14.00 ±0.01 25.74 ±0.32% 26.53 ±0.06 9.29 ±0.17% 27.77 ±0.04
h0 = 0.9 33.66 ±1.61% 24.00 ±0.30 80.10 ±0.00% 13.98 ±0.01 31.08 ±3.55% 25.56 ±0.64 9.13 ±0.18% 27.82 ±0.04
h0 = 1 34.69 ±2.13% 23.75 ±0.41 80.10 ±0.00% 14.02 ±0.01 25.34 ±0.27% 26.61 ±0.04 9.23 ±0.13% 27.77 ±0.03

Figure 11: Coverage and cross-entropy (CE) after 5,000 iterations of DDS-KDE in all domains for each normalized
bandwidth h0. We report the mean over 10 trials (3 trials for Deceptive Maze) with error bars showing the standard
error of the mean. Higher coverage and lower cross-entropy are better. Highlighted cells are results from the main
experiments in Fig. 10. The plots show the normalized bandwidth on the x-axis

domain, WLP = 5.12 · n
2

where n is the dimensionality of the solution space. For conciseness

and consistency, I report the results in terms of the normalized bandwidth h0 =
h

Wdomain
such that

h0 ∈ (0, 1], where Wdomain denotes the feature space bound for the particular domain.

A performance peak can be observed across all domains around h0 = 0.05 (Fig. 11). For LP, Decep-

tive Maze, and Multi-feature LP, DDS-KDE’s performance exhibits diminishes as the bandwidth

increases for h0 ≥ 0.05. For Arm Repertoire, DDS-KDE achieves near-optimal coverage for all

h0 ≥ 0.05.

6.7 Summary of Results

My experimental results demonstrate the both DDS variants excel at discovering diverse solutions,

establishing a strong connection between continuous density estimation and diversity optimization.

This relation is further explored and justified with theoretical analysis.

48

The overcoming strong distortion — the covergence of the archive when many solution map to

the same cell — is an open problem discussed in [46]. I introduced a new domain to QD by

generalizing the canon sphere benchmark to higher-dimensional feature spaces. In this domain, high

feature dimension correlates with strong distortion. This domain presented significant challenges

for baseline algorithms such as CMA-MAE and NS Sec. 6.5, but DDS-KDE only suffered minor

performance loss on 10 dimensional feature space, outperforming all baselines at exploring on the

feature spaces. This is another step closer to overcoming distortion caused by the feature mapping.

While DDS is a DO algorithm, the underlying insight of DDS — leveraging continuous density

representations to search the feature space — can be applied to improve the exploration power

of general QD algorithms, especially in high-dimensional feature spaces. Currently, even on QD

domains high-dimensional feature spaces, CMA-MAE obtains poor results (ongoing work with

ICAROS lab). However, by incorporating quality in addition to the density estimation, one may be

able to overcome the distortions induced by high-dimensional feature spaces.

49

7 Conclusion

My work on pyribs will continue support conception of new QD algorithms and bring more people

into the field of QD. According to Google Scholar, pyribs has already been cited at least 30 times.

In fact, my work on DDS, from prototype to final experiments, was all completed using pyribs. My

other ongoing research projects are also utilizing pyribs to facilitate algorithm prototyping.

My work on DDS makes significant progress towards resolving the open problem of performing

QD under feature spaces with strong distortion. Continuity is the key ingredient here. Although my

algorithm is only designed for DO settings, the concrete connection it estalishes between continuous

density estimation and diversity optimization through both empirical experiments and theoretical

analysis is also applicable in QD settings. One just need to find a proper way to incorporate quality

into DDS, or incorporate DDS into QD algorithms. DDS also offers improvement on classical

two-dimensional DO domains, outperforming the baseline algorithms on three out of the four

domains.

50

8 References

[1] B. Tjanaka et al., “Pyribs: A bare-bones python library for quality diversity optimization,”

in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’23,

New York, NY, USA: Association for Computing Machinery, 2023, pp. 220–229, ISBN:

9798400701191. DOI: 10.1145/3583131.3590374. [Online]. Available: https:

//doi.org/10.1145/3583131.3590374.

[2] D. H. Lee, A. V. Palaparthi, M. C. Fontaine, B. Tjanaka, and S. Nikolaidis, “Density descent

for diversity optimization,” in Proceedings of the Genetic and Evolutionary Computation

Conference, ser. GECCO ’24, New York, NY, USA: Association for Computing Machinery,

2024.

[3] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through the search for

novelty alone,” Evolutionary computation, vol. 19, no. 2, pp. 189–223, 2011.

[4] S. Huang et al., “Open rl benchmark: Comprehensive tracked experiments for reinforcement

learning,” arXiv preprint arXiv:2402.03046, 2024.

[5] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving

the image quality of stylegan,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2020, pp. 8110–8119.

[6] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new frontier for evolutionary

computation,” Frontiers in Robotics and AI, vol. 3, p. 40, 2016, ISSN: 2296-9144. DOI: 10.

3389/frobt.2016.00040. [Online]. Available: https://www.frontiersin.

org/article/10.3389/frobt.2016.00040.

[7] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures through novelty

search and local competition,” in Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, ser. GECCO ’11, Dublin, Ireland: Association for Computing Ma-

chinery, 2011, pp. 211–218, ISBN: 9781450305570. DOI: 10.1145/2001576.2001606.

[Online]. Available: https://doi.org/10.1145/2001576.2001606.

51

https://doi.org/10.1145/3583131.3590374
https://doi.org/10.1145/3583131.3590374
https://doi.org/10.1145/3583131.3590374
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.3389/frobt.2016.00040
https://www.frontiersin.org/article/10.3389/frobt.2016.00040
https://www.frontiersin.org/article/10.3389/frobt.2016.00040
https://doi.org/10.1145/2001576.2001606
https://doi.org/10.1145/2001576.2001606

[8] B. G. Woolley and K. O. Stanley, “A novel human-computer collaboration: Combining

novelty search with interactive evolution,” in Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, ser. GECCO ’14, Vancouver, BC, Canada: As-

sociation for Computing Machinery, 2014, pp. 233–240, ISBN: 9781450326629. DOI: 10.

1145/2576768.2598353. [Online]. Available: https://doi-org.libproxy1.

usc.edu/10.1145/2576768.2598353.

[9] A. Gaier, A. Asteroth, and J.-B. Mouret, “Are quality diversity algorithms better at generating

stepping stones than objective-based search?” In Proceedings of the Genetic and Evolutionary

Computation Conference Companion, ser. GECCO ’19, Prague, Czech Republic: Association

for Computing Machinery, 2019, pp. 115–116, ISBN: 9781450367486. DOI: 10.1145/

3319619.3321897. [Online]. Available: https://doi.org/10.1145/3319619.

3321897.

[10] B. Tjanaka, S. Sommerer, N. Klapsis, M. C. Fontaine, and S. Nikolaidis, “Using cma-me

to land a lunar lander like a space shuttle,” pyribs.org, 2021. [Online]. Available: https:

//docs.pyribs.org/en/stable/tutorials/lunar_lander.html.

[11] M. Fontaine and S. Nikolaidis, “Differentiable quality diversity,” Advances in Neural Infor-

mation Processing Systems, vol. 34, 2021.

[12] A. Radford et al., “Learning transferable visual models from natural language supervision,”

in International conference on machine learning, PMLR, 2021, pp. 8748–8763.

[13] N. R. Balam, B. Tjanaka, D. H. Lee, M. C. Fontaine, and S. Nikolaidis, “Generating tom

cruise images with dqd algorithms,” pyribs.org, 2023. [Online]. Available: https://docs.

pyribs.org/en/stable/tutorials/tom_cruise_dqd.html.

[14] A. Cully, Quality-diversity optimisation algorithms, https://quality-diversity.

github.io, Retrieved 2023-01-31.

[15] O. Nilsson and A. Cully, “Policy gradient assisted map-elites,” in Proceedings of the Genetic

and Evolutionary Computation Conference, ser. GECCO ’21, Lille, France: Association

for Computing Machinery, 2021, pp. 866–875, ISBN: 9781450383509. DOI: 10.1145/

52

https://doi.org/10.1145/2576768.2598353
https://doi.org/10.1145/2576768.2598353
https://doi-org.libproxy1.usc.edu/10.1145/2576768.2598353
https://doi-org.libproxy1.usc.edu/10.1145/2576768.2598353
https://doi.org/10.1145/3319619.3321897
https://doi.org/10.1145/3319619.3321897
https://doi.org/10.1145/3319619.3321897
https://doi.org/10.1145/3319619.3321897
https://docs.pyribs.org/en/stable/tutorials/lunar_lander.html
https://docs.pyribs.org/en/stable/tutorials/lunar_lander.html
https://docs.pyribs.org/en/stable/tutorials/tom_cruise_dqd.html
https://docs.pyribs.org/en/stable/tutorials/tom_cruise_dqd.html
https://quality-diversity.github.io
https://quality-diversity.github.io
https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304

3449639.3459304. [Online]. Available: https://doi.org/10.1145/3449639.

3459304.

[16] C. Colas, V. Madhavan, J. Huizinga, and J. Clune, “Scaling map-elites to deep neuroevo-

lution,” in Proceedings of the 2020 Genetic and Evolutionary Computation Conference,

ser. GECCO ’20, Cancún, Mexico: Association for Computing Machinery, 2020, pp. 67–

75, ISBN: 9781450371285. DOI: 10.1145/3377930.3390217. [Online]. Available:

https://doi.org/10.1145/3377930.3390217.

[17] B. Tjanaka, M. C. Fontaine, J. Togelius, and S. Nikolaidis, “Approximating gradients for

differentiable quality diversity in reinforcement learning,” in Proceedings of the Genetic and

Evolutionary Computation Conference, 2022, pp. 1102–1111.

[18] T. Pierrot et al., “Diversity policy gradient for sample efficient quality-diversity optimization,”

in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’22,

Boston, Massachusetts: Association for Computing Machinery, 2022, pp. 1075–1083, ISBN:

9781450392372. DOI: 10.1145/3512290.3528845. [Online]. Available: https:

//doi.org/10.1145/3512290.3528845.

[19] B. Tjanaka, M. C. Fontaine, A. Kalkar, and S. Nikolaidis, “Training diverse high-dimensional

controllers by scaling covariance matrix adaptation map-annealing,” arXiv preprint arXiv:2210.02622,

2022.

[20] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. Stanley, and J. Clune, “Improving

exploration in evolution strategies for deep reinforcement learning via a population of novelty-

seeking agents,” in Advances in Neural Information Processing Systems 31, S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., Curran

Associates, Inc., 2018, pp. 5027–5038. [Online]. Available: http://papers.nips.

cc/paper/7750-improving-exploration-in-evolution-strategies-

for-deep-reinforcement-learning-via-a-population-of-novelty-

seeking-agents.pdf.

53

https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3377930.3390217
https://doi.org/10.1145/3377930.3390217
https://doi.org/10.1145/3512290.3528845
https://doi.org/10.1145/3512290.3528845
https://doi.org/10.1145/3512290.3528845
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf

[21] D. Morrison, P. Corke, and J. Leitner, “Egad! an evolved grasping analysis dataset for diversity

and reproducibility in robotic manipulation,” IEEE Robotics and Automation Letters, vol. 5,

no. 3, pp. 4368–4375, 2020. DOI: 10.1109/LRA.2020.2992195.

[22] A. Morel, Y. Kunimoto, A. Coninx, and S. Doncieux, “Automatic acquisition of a repertoire

of diverse grasping trajectories through behavior shaping and novelty search,” in 2022

International Conference on Robotics and Automation (ICRA), 2022, pp. 755–761. DOI:

10.1109/ICRA46639.2022.9811837.

[23] M. Fontaine and S. Nikolaidis, “A quality diversity approach to automatically generating

human-robot interaction scenarios in shared autonomy,” Proceedings of Robotics: Science

and Systems 17, 2020.

[24] M. C. Fontaine and S. Nikolaidis, “Evaluating human–robot interaction algorithms in shared

autonomy via quality diversity scenario generation,” ACM Transactions on Human-Robot

Interaction (THRI), vol. 11, no. 3, pp. 1–30, 2022.

[25] M. C. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis, “On the importance of

environments in human-robot coordination,” Proceedings of Robotics: Science and Systems

17, Jul. 2021. DOI: 10.15607/RSS.2021.XVII.038.

[26] M. C. Fontaine et al., “Illuminating mario scenes in the latent space of a generative adversarial

network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,

pp. 5922–5930.

[27] S. Earle, J. Snider, M. C. Fontaine, S. Nikolaidis, and J. Togelius, “Illuminating diverse

neural cellular automata for level generation,” in Proceedings of the Genetic and Evolutionary

Computation Conference, 2022, pp. 68–76.

[28] V. Bhatt, B. Tjanaka, M. Fontaine, and S. Nikolaidis, “Deep surrogate assisted generation

of environments,” in Advances in Neural Information Processing Systems, S. Koyejo, S.

Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Curran Associates, Inc.,

2022, pp. 37 762–37 777. [Online]. Available: https://proceedings.neurips.cc/

54

https://doi.org/10.1109/LRA.2020.2992195
https://doi.org/10.1109/ICRA46639.2022.9811837
https://doi.org/10.15607/RSS.2021.XVII.038
https://proceedings.neurips.cc/paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-Paper-Conference.pdf

paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-

Paper-Conference.pdf.

[29] T. Galanos, A. Liapis, G. N. Yannakakis, and R. Koenig, “Arch-elites: Quality-diversity for

urban design,” in Proceedings of the Genetic and Evolutionary Computation Conference

Companion, ser. GECCO ’21, Lille, France: Association for Computing Machinery, 2021,

pp. 313–314, ISBN: 9781450383516. DOI: 10.1145/3449726.3459490. [Online].

Available: https://doi.org/10.1145/3449726.3459490.

[30] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-Efficient Design Exploration through Surrogate-

Assisted Illumination,” Evolutionary Computation, vol. 26, no. 3, pp. 381–410, Sep. 2018,

ISSN: 1063-6560. DOI: 10.1162/evco_a_00231. eprint: https://direct.mit.

edu/evco/article-pdf/26/3/381/1552355/evco_a_00231.pdf.

[Online]. Available: https://doi.org/10.1162/evco%5C_a%5C_00231.

[31] T. Endo, H. Abe, and M. Oka, “Toward automatic generation of diverse congestion control

algorithms through co-evolution with simulation environments,” in ALIFE 2022: The 2022

Conference on Artificial Life, Jul. 2022. DOI: 10.1162/isal_a_00515. eprint: https:

//direct.mit.edu/isal/proceedings-pdf/isal/34/33/2035325/

isal_a_00515.pdf. [Online]. Available: https://doi.org/10.1162/

isal%5C_a%5C_00515.

[32] J. Verhellen and J. Van den Abeele, “Illuminating elite patches of chemical space,” Chem. Sci.,

vol. 11, pp. 11 485–11 491, 42 2020. DOI: 10.1039/D0SC03544K. [Online]. Available:

http://dx.doi.org/10.1039/D0SC03544K.

[33] S. Zhao, Cabbagecat’s blogs, https://szhaovas.github.io, Retrieved 2023-01-31.

[34] Institute of Digital Games, Game ai - creative artificial evolution through quality diver-

sity algorithms, https://www.game.edu.mt/blog/game-ai-creative-

artificial-evolution-through-quality-diversity-algorithms/,

Retrieved 2023-01-31, Apr. 2019.

55

https://proceedings.neurips.cc/paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f649556471416b35e60ae0de7c1e3619-Paper-Conference.pdf
https://doi.org/10.1145/3449726.3459490
https://doi.org/10.1145/3449726.3459490
https://doi.org/10.1162/evco_a_00231
https://direct.mit.edu/evco/article-pdf/26/3/381/1552355/evco _a_ 00231.pdf
https://direct.mit.edu/evco/article-pdf/26/3/381/1552355/evco _a_ 00231.pdf
https://doi.org/10.1162/evco%5C_a%5C_00231
https://doi.org/10.1162/isal_a_00515
https://direct.mit.edu/isal/proceedings-pdf/isal/34/33/2035325/isal _a_00515.pdf
https://direct.mit.edu/isal/proceedings-pdf/isal/34/33/2035325/isal _a_00515.pdf
https://direct.mit.edu/isal/proceedings-pdf/isal/34/33/2035325/isal _a_00515.pdf
https://doi.org/10.1162/isal%5C_a%5C_00515
https://doi.org/10.1162/isal%5C_a%5C_00515
https://doi.org/10.1039/D0SC03544K
http://dx.doi.org/10.1039/D0SC03544K
https://szhaovas.github.io
 https://www.game.edu.mt/blog/game-ai-creative-artificial-evolution-through-quality-diversity-algorithms/
 https://www.game.edu.mt/blog/game-ai-creative-artificial-evolution-through-quality-diversity-algorithms/

[35] K. Frans, Quality diversity: Evolving ocean creatures, https://kvfrans.com/

quality-diversity-evolving-ocean-creatures/, Retrieved 2023-01-31,

Dec. 2020.

[36] O. Mohamed, Quality-diversity algorithms: Map-polar, https://towardsdatascience.

com/quality-diversity-algorithms-a-new-approach-based-on-

map-elites-applied-to-robot-navigation-f51380deec5d, Retrieved

2023-01-31, Mar. 2021.

[37] M. Flageat and B. Lim, Benchmarking quality-diversity algorithms on neuroevolution for

reinforcement learning, https://aihub.org/2022/12/14/benchmarking-

quality-diversity-algorithms-on-neuroevolution-for-reinforcement-

learning/, Retrieved 2023-01-31, Dec. 2022.

[38] M. Allard, Quality-diversity algorithms, https://maximeallard.lu/2021/03/

24/quality-diversity-algorithms/, Retrieved 2023-01-31, Mar. 2021.

[39] D. Wolz, Fcmaes - a python-3 derivative-free optimization library, Available at https://

github.com/dietmarwo/fast-cma-es, Python/C++ source code, with description

and examples, 2022.

[40] A. Cully, J.-B. Mouret, and S. p. Doncieux, “Quality-diversity optimisation,” in Proceedings

of the 2020 Genetic and Evolutionary Computation Conference Companion, ser. GECCO

’20, Cancún, Mexico: Association for Computing Machinery, 2020, pp. 701–723, ISBN:

9781450371278. DOI: 10.1145/3377929.3389852. [Online]. Available: https:

//doi.org/10.1145/3377929.3389852.

[41] A. Cully, J.-B. Mouret, and S. p. Doncieux, “Quality-diversity optimisation,” in Proceedings

of the Genetic and Evolutionary Computation Conference Companion, ser. GECCO ’21, Lille,

France: Association for Computing Machinery, 2021, pp. 715–739, ISBN: 9781450383516.

DOI: 10.1145/3449726.3461403. [Online]. Available: https://doi.org/10.

1145/3449726.3461403.

56

 https://kvfrans.com/quality-diversity-evolving-ocean-creatures/
 https://kvfrans.com/quality-diversity-evolving-ocean-creatures/
 https://towardsdatascience.com/quality-diversity-algorithms-a-new-approach-based-on-map-elites-applied-to-robot-navigation-f51380deec5d
 https://towardsdatascience.com/quality-diversity-algorithms-a-new-approach-based-on-map-elites-applied-to-robot-navigation-f51380deec5d
 https://towardsdatascience.com/quality-diversity-algorithms-a-new-approach-based-on-map-elites-applied-to-robot-navigation-f51380deec5d
 https://aihub.org/2022/12/14/benchmarking-quality-diversity-algorithms-on-neuroevolution-for-reinforcement-learning/
 https://aihub.org/2022/12/14/benchmarking-quality-diversity-algorithms-on-neuroevolution-for-reinforcement-learning/
 https://aihub.org/2022/12/14/benchmarking-quality-diversity-algorithms-on-neuroevolution-for-reinforcement-learning/
 https://maximeallard.lu/2021/03/24/quality-diversity-algorithms/
 https://maximeallard.lu/2021/03/24/quality-diversity-algorithms/
 https://github.com/dietmarwo/fast-cma-es
 https://github.com/dietmarwo/fast-cma-es
https://doi.org/10.1145/3377929.3389852
https://doi.org/10.1145/3377929.3389852
https://doi.org/10.1145/3377929.3389852
https://doi.org/10.1145/3449726.3461403
https://doi.org/10.1145/3449726.3461403
https://doi.org/10.1145/3449726.3461403

[42] A. Cully, J.-B. Mouret, and S. p. Doncieux, “Quality-diversity optimisation,” in Proceedings

of the Genetic and Evolutionary Computation Conference Companion, ser. GECCO ’22,

Boston, Massachusetts: Association for Computing Machinery, 2022, pp. 864–889, ISBN:

9781450392686. DOI: 10.1145/3520304.3533637. [Online]. Available: https:

//doi.org/10.1145/3520304.3533637.

[43] J. Clune, J. Lehman, and K. O. Stanley, Recent advances in population-based search for deep

neural networks, ICML 2019 Tutorials, https://youtu.be/g6HiuEnbwJE, 2019.

[44] M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover, “Covariance matrix adapta-

tion for the rapid illumination of behavior space,” in Proceedings of the 2020 genetic and

evolutionary computation conference, 2020, pp. 94–102.

[45] A. Chenu, N. Perrin-Gilbert, S. Doncieux, and O. Sigaud, “Selection-expansion: A unify-

ing framework for motion-planning and diversity search algorithms,” in Artificial Neural

Networks and Machine Learning–ICANN 2021: 30th International Conference on Artificial

Neural Networks, Bratislava , Slovakia, September 14–17, 2021, Proceedings, Part IV 30,

Springer, 2021, pp. 568–579.

[46] M. Fontaine and S. Nikolaidis, “Covariance matrix adaptation map-annealing,” in Proceed-

ings of the Genetic and Evolutionary Computation Conference, 2023, pp. 456–465.

[47] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772, 2016.

[48] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,” arXiv preprint

arXiv:1504.04909, 2015.

[49] V. Vassiliades and J.-B. Mouret, “Discovering the elite hypervolume by leveraging inter-

species correlation,” in Proceedings of the Genetic and Evolutionary Computation Confer-

ence, 2018, pp. 149–156.

[50] V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret, “Using centroidal voronoi tessellations

to scale up the multidimensional archive of phenotypic elites algorithm,” IEEE Transactions

on Evolutionary Computation, vol. 22, no. 4, pp. 623–630, 2018. DOI: 10.1109/TEVC.

2017.2735550.

57

https://doi.org/10.1145/3520304.3533637
https://doi.org/10.1145/3520304.3533637
https://doi.org/10.1145/3520304.3533637
https://youtu.be/g6HiuEnbwJE
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1109/TEVC.2017.2735550

[51] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi, “Bidirectional relation between cma

evolution strategies and natural evolution strategies,” in International Conference on Parallel

Problem Solving from Nature, Springer, 2010, pp. 154–163.

[52] J.-B. Mouret and S. Doncieux, “SFERESv2: Evolvin’ in the multi-core world,” in Proc. of

Congress on Evolutionary Computation (CEC), 2010, pp. 4079–4086.

[53] L. Cazenille, Qdpy: A python framework for quality-diversity, https://gitlab.com/

leo.cazenille/qdpy, 2018.

[54] B. Lim, M. Allard, L. Grillotti, and A. Cully, “Accelerated quality-diversity for robotics

through massive parallelism,” arXiv preprint arXiv:2202.01258, 2022.

[55] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–

362, Sep. 2020. DOI: 10.1038/s41586-020-2649-2. [Online]. Available: https:

//doi.org/10.1038/s41586-020-2649-2.

[56] J. Bradbury et al., JAX: Composable transformations of Python+NumPy programs, http:

//github.com/google/jax, version 0.3.13, 2018. [Online]. Available: %5Curl%

7Bhttp://github.com/google/jax%7D.

[57] A. Cully, “Multi-emitter MAP-elites,” in Proceedings of the Genetic and Evolutionary Com-

putation Conference, ACM, Jun. 2021. DOI: 10.1145/3449639.3459326. [Online].

Available: https://doi.org/10.1145%5C%2F3449639.3459326.

[58] M. C. Fontaine, S. Lee, L. B. Soros, F. De Mesentier Silva, J. Togelius, and A. K. Hoover,

“Mapping hearthstone deck spaces through map-elites with sliding boundaries,” in Pro-

ceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’19,

Prague, Czech Republic: Association for Computing Machinery, 2019, pp. 161–169, ISBN:

9781450361118. DOI: 10.1145/3321707.3321794. [Online]. Available: https:

//doi.org/10.1145/3321707.3321794.

[59] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-

gies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

58

https://gitlab.com/leo.cazenille/qdpy
https://gitlab.com/leo.cazenille/qdpy
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://github.com/google/jax
http://github.com/google/jax
%5Curl%7Bhttp://github.com/google/jax%7D
%5Curl%7Bhttp://github.com/google/jax%7D
https://doi.org/10.1145/3449639.3459326
https://doi.org/10.1145%5C%2F3449639.3459326
https://doi.org/10.1145/3321707.3321794
https://doi.org/10.1145/3321707.3321794
https://doi.org/10.1145/3321707.3321794

[60] Y. Zhang, M. C. Fontaine, A. K. Hoover, and S. Nikolaidis, “Deep surrogate assisted map-

elites for automated hearthstone deckbuilding,” in Proceedings of the Genetic and Evolution-

ary Computation Conference, 2022, pp. 158–167.

[61] P. Kent and J. Branke, “Bop-elites, a bayesian optimisation algorithm for quality-diversity

search,” arXiv preprint arXiv:2005.04320, 2020.

[62] Python Software Foundation, Python Package Index, https://pypi.org.

[63] Anaconda, Inc., Anaconda, https://anaconda.org.

[64] A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying modular framework,”

IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 245–259, 2017.

[65] D. H. Lee, B. Tjanaka, M. C. Fontaine, and S. Nikolaidis, “Upgrading cma-me to cma-mae on

the sphere benchmark,” pyribs.org, 2022. [Online]. Available: https://docs.pyribs.

org/en/stable/tutorials/cma_mae.html.

[66] A. Cully, “Autonomous skill discovery with quality-diversity and unsupervised descriptors,”

in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’19,

Prague, Czech Republic: Association for Computing Machinery, 2019, pp. 81–89, ISBN:

9781450361118. DOI: 10.1145/3321707.3321804. [Online]. Available: https:

//doi.org/10.1145/3321707.3321804.

[67] G. Paolo, A. Coninx, S. Doncieux, and A. Laflaquière, “Sparse reward exploration via

novelty search and emitters,” in Proceedings of the Genetic and Evolutionary Computation

Conference, ser. GECCO ’21, Lille, France: Association for Computing Machinery, 2021,

pp. 154–162, ISBN: 9781450383509. DOI: 10.1145/3449639.3459314. [Online].

Available: https://doi.org/10.1145/3449639.3459314.

[68] Y.-C. Chen, “A tutorial on kernel density estimation and recent advances,” Biostatistics &

Epidemiology, vol. 1, no. 1, pp. 161–187, 2017.

[69] B. W. Silverman, Density estimation for statistics and data analysis. CRC press, 1986,

vol. 26.

59

https://pypi.org
https://anaconda.org
https://docs.pyribs.org/en/stable/tutorials/cma_mae.html
https://docs.pyribs.org/en/stable/tutorials/cma_mae.html
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3449639.3459314
https://doi.org/10.1145/3449639.3459314

[70] M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scandinavian

Journal of Statistics, vol. 9, no. 2, pp. 65–78, 1982. [Online]. Available: http://www.

jstor.org/stable/4615859.

[71] A. W. Bowman, “An alternative method of cross-validation for the smoothing of density

estimates,” Biometrika, vol. 71, no. 2, pp. 353–360, 1984. [Online]. Available: http:

//www.jstor.org/stable/2336252.

[72] S. Weglarczyk, “Kernel density estimation and its application,” ITM Web Conf., vol. 23,

p. 00 037, 2018. DOI: 10.1051/itmconf/20182300037. [Online]. Available: https:

//doi.org/10.1051/itmconf/20182300037.

[73] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le, “Flow matching for

generative modeling,” in The Eleventh International Conference on Learning Representations,

2023. [Online]. Available: https://openreview.net/forum?id=PqvMRDCJT9t.

[74] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber, “Exponential natural evo-

lution strategies,” in Proceedings of the 12th annual conference on Genetic and evolutionary

computation, 2010, pp. 393–400.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/

1412.6980.

[76] J. K. Pugh, L. B. Soros, P. A. Szerlip, and K. O. Stanley, “Confronting the challenge of

quality diversity,” in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, ser. GECCO ’15, Madrid, Spain: Association for Computing Machinery, 2015,

pp. 967–974, ISBN: 9781450334723. DOI: 10.1145/2739480.2754664. [Online].

Available: https://doi.org/10.1145/2739480.2754664.

[77] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stability of stochastic

gradient descent,” in International conference on machine learning, PMLR, 2016, pp. 1225–

1234.

60

http://www.jstor.org/stable/4615859
http://www.jstor.org/stable/4615859
http://www.jstor.org/stable/2336252
http://www.jstor.org/stable/2336252
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://openreview.net/forum?id=PqvMRDCJT9t
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2739480.2754664
https://doi.org/10.1145/2739480.2754664

[78] K.-H. Li, “Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))),” ACM Trans.

Math. Softw., vol. 20, no. 4, pp. 481–493, Dec. 1994, ISSN: 0098-3500. DOI: 10.1145/

198429.198435. [Online]. Available: https://doi.org/10.1145/198429.

198435.

[79] L. Grillotti and A. Cully, “Kheperax: A lightweight jax-based robot control environment for

benchmarking quality-diversity algorithms,” in Proceedings of the Companion Conference

on Genetic and Evolutionary Computation, ser. GECCO ’23 Companion, Lisbon, Portugal:

Association for Computing Machinery, 2023, pp. 2163–2165, ISBN: 9798400701207. DOI:

10.1145/3583133.3596387. [Online]. Available: https://doi.org/10.1145/

3583133.3596387.

[80] J. Gomes, P. Mariano, and A. L. Christensen, “Devising effective novelty search algorithms:

A comprehensive empirical study,” in Proceedings of the 2015 Annual Conference on Genetic

and Evolutionary Computation, ser. GECCO ’15, Madrid, Spain: Association for Comput-

ing Machinery, 2015, pp. 943–950, ISBN: 9781450334723. DOI: 10.1145/2739480.

2754736. [Online]. Available: https://doi.org/10.1145/2739480.2754736.

[81] B. Tjanaka, M. C. Fontaine, and S. Nikolaidis, “Learning a repertoire of robot arm config-

urations,” pyribs.org, 2021. [Online]. Available: https://docs.pyribs.org/en/

stable/tutorials/arm_repertoire.html.

61

https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/3583133.3596387
https://doi.org/10.1145/3583133.3596387
https://doi.org/10.1145/3583133.3596387
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1145/2739480.2754736
https://docs.pyribs.org/en/stable/tutorials/arm_repertoire.html
https://docs.pyribs.org/en/stable/tutorials/arm_repertoire.html

A Tukey’s HSD Pairwise Comparisons

We include results from our statistical analysis in Sec. 6.5. We performed one-way ANOVAs in

each domain, shown in Tab. 2. We also performed pairwise comparisons with Tukey’s HSD, shown

in Tab. 3 and Tab. 4.

Table 3: Pairwise comparisons for coverage in each domain. Each entry compares the method in the row to the method
in the column. For instance, we can see that DDS-KDE had significantly higher coverage than NS in LP. Comparisons
were performed with Tukey’s HSD test. > indicates significantly greater, < indicates significantly less, and − indicates
no significant difference. ∅ indicates an invalid comparison.

LP Arm Repertoire Deceptive Maze Multi-dim LP

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

DDS-KDE ∅ − > > > > ∅ − > > > > ∅ > > − > − ∅ > > > > >
DDS-CNF − ∅ > > > > − ∅ > > > > < ∅ > < − − < ∅ > > > >
NS < < ∅ < < < < < ∅ > > > < < ∅ < − < < < ∅ < > >
CMA-MAE < < > ∅ > > < < < ∅ > > − > > ∅ > > < < > ∅ > >
CMA-ME < < > < ∅ − < < < < ∅ < < − − < ∅ < < < < < ∅ <
MAP-Elites (line) < < > < − ∅ < < < < > ∅ − − > < > ∅ < < < < > ∅

Table 4: Pairwise comparisons for cross-entropy in each domain. Note that lower cross-entropy is better, so significantly
less (<) indicates that a method is significantly better.

LP Arm Repertoire Deceptive Maze Multi-dim LP

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

D
D

S-
K

D
E

D
D

S-
C

N
F

N
S

C
M

A
-M

A
E

C
M

A
-M

E
M

A
P-

E
lit

es
(l

in
e)

DDS-KDE ∅ − < < < < ∅ > < > < > ∅ < < − < < ∅ < < < < <
DDS-CNF − ∅ < − < < < ∅ < > < − > ∅ < > − − > ∅ − < − <
NS > > ∅ > > > > > ∅ > < > > > ∅ > − > > − ∅ < − <
CMA-MAE > − < ∅ < < < < < ∅ < < − < < ∅ < < > > > ∅ > <
CMA-ME > > < > ∅ − > > > > ∅ > > − − > ∅ > > − − < ∅ <
MAP-Elites (line) > > < > − ∅ < − < > < ∅ > − < > < ∅ > > > > > ∅

62

B Proofs

Theorem B.1. A kernel density estimate D̂h(x;B) managed with reservoir sampling, such that

features in the buffer are exchanged one at a time, is 1
|B|h -uniformly stable, where h is the bandwidth.

Proof. Let buffer B ⊆ Rm and B′ = B \ {xi} ∪ {xj} for xi ∈ B and xj ∈ Rm. Consider the

maximum difference between D̂h(x;B) and D̂h(x;B′):

sup
x∈Rd

∣∣∣D̂h(x;B)− D̂h(x;B′)
∣∣∣ = sup

x∈Rm

∣∣∣∣∣ 1

|B|h
∑
a∈B

K

(
∥x− a∥

h

)
− 1

|B|h
∑
a′∈B′

K

(
∥x− a′∥

h

)∣∣∣∣∣
(10)

=
1

|B|h
sup
x∈Rm

∣∣∣∣∣∑
a∈B

K

(
∥x− a∥

h

)
−

∑
a′∈B′

K

(
∥x− a′∥

h

)∣∣∣∣∣ (11)

=
1

|B|h
sup
x∈Rm

∣∣∣∣K (
∥x− xi∥

h

)
−K

(
∥x− xj∥

h

)∣∣∣∣ (12)

≤ 1

|B|h
(13)

Since B and B′ differ by exactly one element, each term in the summation for Eq. 11 cancels

except for xi and xj . Eq. 13 is due to the fact that any kernel K(·) is bounded between [0, 1] by

definition.

Theorem B.2. Novelty score ρ(x;B) is W
k

-uniformly stable, where k is the nearest neighbors

parameter in novelty score and W = maxs1,s2∈S∥s1 − s2∥ is the diameter of the feature space S.

Proof. Let buffer B ⊆ Rm and B′ = B ∪ {xj} for xj ∈ Rm. Since we constructed B′ by adding a

single element to B, Nk(x,B) and Nk(x,B′) differ by at most one element xi ∈ B and xj ∈ B′.

63

Hence,

sup
x∈Rd

|ρ(x;B)− ρ(x;B′)| = sup
x∈Rd

∣∣∣∣∣∣1k
∑

a∈Nk(x;B)

∥x− a∥ − 1

k

∑
a∈Nk(x;B′)

∥x− a∥

∣∣∣∣∣∣
=

1

k
sup
x∈Rd

|∥x− xi∥ − ∥x− xj∥|

≤ 1

k
sup
x∈Rd

∥xi − xj∥

≤ W

k

Theorem B.3. Let B ⊆ Rm be a set of features. Consider the rankings πNS and πKDE on another set

of features {ϕ1, . . . ,ϕm} ⊆ Rm where ϕi = ϕ(θi). We define the rankings as follows: πNS(i) ≥

πNS(j) ⇐⇒ ρ(ϕi;B) ≥ ρ(ϕj;B) and πKDE(i) ≥ πKDE(j) ⇐⇒ D̂(ϕi;B) ≤ D̂(ϕj;B). We

show that πNS = πKDE , when NS has k =∞ (or, equivalently, k = |B|) and KDE has triangular

kernel K(u) = 1− |u| with support over the entire feature space S.

Proof. Recall the novelty score function,

ρ(x;B) = 1

|B|
∑
b∈B

∥x− b∥

Consider the kernel density estimator with h = 1 and triangular kernel,

D̂(x;B) = 1

|B|
∑
b∈B

K (∥x− b∥)

=
1

|B|
∑
b∈B

(1− ∥x− b∥)

= 1− 1

|B|
∑
b∈B

∥x− b∥

= 1− ρ(x;B)

64

Thus, ρ(ϕi;B) ≤ ρ(ϕj;B) ⇐⇒ D̂(ϕi;B) ≥ D̂(ϕj;B).

65

	1 Abstract
	2 Introduction
	2.1 Quality Diversity Optimization
	2.2 Framework for Quality Diversity Optimization
	2.3 Leveraging Density Estimation in Diversity Optimization

	3 Problem Definitions
	4 Existing Algorithms
	5 pyribs: A Bare-Bones Python Library for Quality Diversity Optimization
	5.1 Design Principles
	5.2 The RIBS Framework
	5.3 Composing Algorithms in RIBS
	5.4 Comparison to Existing QD Libraries
	5.5 Summary

	6 Density Descent in Diversity Optimization
	6.1 Density Estimation Methods
	6.2 Algorithmic Details
	6.3 Connection between Novelty Search and Kernel Density Estimates
	6.3.1 Stability Under Non-stationarity
	6.3.2 Equivalence of NS and DDS-KDE

	6.4 Reservoir Sampling for Maintaining a Representative Buffer
	6.5 Experiments
	6.5.1 Experimental Design
	6.5.2 Domain Details
	6.5.3 Statistical Analysis

	6.6 Bandwidth Selection for DDS-KDE
	6.7 Summary of Results

	7 Conclusion
	A Tukey's HSD Pairwise Comparisons
	B Proofs

