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1 Introduction

In this paper, we explore the use of convex optimization in compressed sensing. Specifically, we
examine the application of convex programming in the problem of low-rank matrix and tensor
reconstruction from sparse sampling.
We begin by giving a brief overview of the linear algebra techniques that will be used frequently
throughout our paper. These include singular value decomposition (SVD) of matrices, semi-unitary
matrices and their properties, and orthogonal projection matrices and their properties. We provide
an explanation of each topic and review key properties that will be necessary for our proofs.
Next, we give an overview of the proof that low-rank matrix and tensor completion can be rep-
resented as a convex optimization problem (specifically one of minimizing nuclear norm). Then
we provide the main theorem of matrix completion, which gives a lower bound on the number of
samples necessary to exactly reconstruct the original matrix with high probability.
We then use matrix reconstruction in two applications: NBA Finals Prediction and 3D model com-
pletion. Finally, we apply our algorithm for matrix reconstruction and examine its performance.

2 Linear Algebra Overview

This section provides an overview of the Linear Algebra concepts used in this report. The expla-
nation of these concepts extensively references the book Matrix Algebra, written by Abadir and
Magnus (2005).

2.1 Complex Conjugate

The complex conjugate is a transformation on matrices. To calculate the complex conjugate of A,
take the transpose AT and then replace each entry with its complex conjugate. For example, the
entry a + bi would have a complex conjugate of a − bi. We denote the complex conjugate as A∗ in
this survey.
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2.2 Semi-Unitary Matrices

A matrix A is semi-unitary if and only if A∗A = I or AA∗ = I. If A ∈ Rn1×n2 where n1 > n2 then
A∗A = I. In this paper, this property will only ever be applied on matrices with more rows than
columns.

2.3 Orthogonal Projection Matrices

An orthogonal projection matrix P satisfies P 2 = P = P ∗. Orthogonal projection matrices can
also be used to project vectors onto a subspace. Let the columns of S be the basis of some subspace
S. Then PS , the orthogonal projection matrix onto the subspace S is defined as follows:

PS = S(S
∗S)−1S∗

Note that PSx will be in the subspace S (PSx can be expressed as a linear combination of the
columns of S).

2.4 Compact Singular Value Decomposition (SVD)

Compact singular value decomposition decomposes any matrix into three matrices: a left singular
vector matrix, a singular value matrix, and a right singular vector matrix. The matrix M ∈ Rn1×n2

can be expressed as:
M = UΣV ∗

Both U and V are unitary matrices. Σ is a diagonal matrix: diag(σ1, . . . , σr).1 Compact SVD
removes all zero singular values along with corresponding columns of U and V , so U ∈ Rn1×r,Σ ∈
Rr×r, and V ∈ Rn2×r where r is the rank of matrix M . The above formulation is equivalent to

M =
r

∑
i=1

σiuiv
∗
i

where [r] = {0, . . . , r}, U = [u1 ⋯ ur], and V = [v1 ⋯ vr]. Useful properties of compact SVD
that will be used later is that the projection matrices onto the column space (PU) and row space
(PV ) are given by

PU = U(U
∗U)−1U∗ = UU∗

PV = V (V
∗V )−1V ∗ = V V ∗

2.5 Useful Norms

Nuclear Norm ∥M∥∗ is the sum of the singular values of a matrix M .

Spectral Norm ∥M∥ is the largest singular value of a matrix M .
1We assume for the rest of this paper that singular values are sorted in descending order, so σ1 ≥ σ2 ≥ ... ≥ σr.
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2.6 Von Neumann’s Trace Inequality

tr(Y ⊺X) ≤
q

∑
i=1

σi(Y )σi(X)

This provides an upper bound on the trace of the LHS. This inequality will be useful for converting
the conjugate of the rank function to a more usable state, as seen later in the paper.

3 Matrix Completion as Convex Optimization Problem

3.1 Formulation

In matrix completion, we would like to recover the entries of a low-rank matrix by sampling a
sparse set of entries from the original matrix. Let ϕ(X) denote the rank of matrix X, and let M
be the matrix that we are trying to find and X be variable of the convex program. If we have
a masking matrix Ω ∈ {0,1}n1×n2 which represents the positions that we sample and a function
PΩ ∶ Rn1×n2 → Rn1×n2 that applies the mask, our problem can be written as:

minimize ϕ(X)
subject to PΩ(X) = PΩ(M)

(1)

Unfortunately, rank is not a convex function, so this is not a convex program. We solve this
problem by taking the double conjugate of the rank function. By the properties of conjugates,
we know this will yield the the convex envelope of the rank function, which is guaranteed to be
convex.

Lemma 1. The nuclear norm ∥⋅∥∗ is the convex envelope of the rank function ϕ.

This section uses information from Fazel (2002). First, we will examine the conjugate of the rank
function:

ϕ∗(Y ) = sup
∥X∥≤1

(⟨Y ,X⟩ − ϕ(X))

= sup
∥X∥≤1

(tr(Y ⊺X) − ϕ(X)) (2)

Note that we must bound the spectral norm of X (∥X∥ ≤ 1), because otherwise we could pick an
X with an arbitrarily high spectral norm and the first term of the supremum would always be ∞.
For the remainder of this proof, let q =min(n1, n2). Subsection 2.6 states:

tr(Y ⊺X) ≤
q

∑
i=1

σi(Y )σi(X) (3)

As stated previously, Inequality 3 gives an upper bound on the first term in Equation 2. Fazel
showed that when taking the SVD of X = UXΣXV

⊺
X and Y = UYΣYV

⊺
Y , setting UX = UY and

VX = VY will result in tr(Y ⊺X) = ∑
q
i=1 σi(Y )σi(X) because U and V are orthonormal bases, so

solving the following supremum is equivalent:

ϕ∗(Y ) = sup
∥X∥≤1

(

q

∑
i=1
(σi(Y )σi(X)) − ϕ(X))
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It turns out that this simplifies to two cases:

ϕ∗(Y ) =

⎧⎪⎪
⎨
⎪⎪⎩

0, when ∣∣Y ∣∣ ≤ 1
∑

r
i=1 [σi(Y ) − 1] , where σr(Y ) > 1 and σr+1(Y ) ≤ 1

In other words, the conjugate of the rank is the sum of the r singular values that are greater than
1 (each elementwise subtracted by 1). To get the convex envelope of rank, we take the double
conjugate:

ϕ∗∗(Z) = sup
Y
(tr(Z⊺Y ) − ϕ∗(Y ))

= sup
Y
(

q

∑
i=1
(σi(Z)σi(Y )) − ϕ

∗
(Y ))

By a very similar series of steps as we did for the first conjugate. We will examine the following
three cases.

• If ∣∣Z ∣∣ > 1, then by writing out the full expression for ϕ∗(Y ) and factoring, we see that the
supremum will be ∞.

sup
Y
(

q

∑
i=1
(σi(Z)σi(Y )) − ϕ

∗
(Y )) = sup

Y
(σ1(Z)σ1(Y ) − σ1(Y ) + ... − r)

= sup
Y
(σ1(Y )(σ1(Z) − 1) + ... − r)

We can simply let σ1(Y ) approach ∞ (since it is multiplied by a positive value) and achieve
a supremum of infinity. Therefore, in order to achieve any meaningful results, we must bound
∣∣Z∣∣ ≤ 1.

• If ∣∣Z ∣∣ ≤ 1 and ∣∣Y ∣∣ ≤ 1, then we know that ϕ(Y) = 0, so to maximize, we choose a Y such that
all the singular values σ1 = ... = σq = 1.

ϕ∗∗(Z) =
q

∑
i=0

σi(Z) = ∣∣Z∣∣∗

• If ∣∣Z ∣∣ ≤ 1 and ∣∣Y ∣∣ > 1, then we have
q

∑
i=1

σi(Z)σi(Y ) − ϕ
∗
(Y ) =

q

∑
i=1

σi(Z)σi(Y ) −
r

∑
i=1
(σi(Y ) − 1) +

q

∑
i=1

σi(Z) −
q

∑
i=1

σi(Z)

=
r

∑
i=1
(σi(Z)σi(Y ) − σi(Z) − σi(Y ) + 1) +

q

∑
i=r+1

σi(Z)(σi(Y ) − 1) +
q

∑
i=1

σi(Z)

=
r

∑
i=1
((σi(Z) − 1)(σi(Y ) − 1)) +

q

∑
i=r+1

σi(Z)(σi(Y ) − 1) +
q

∑
i=1

σi(Z) (4)

≤

q

∑
i=1

σi(Z)

= ∥Z∥∗ (5)

We know that line (4) is less than line (5) since the first two terms in the summation are always
negative (remember we defined the first r singular values of Y to be greater than 1 and the less
to be less than 1.
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Therefore, when we bound ∣∣X∣∣ < 1 and limit ourselves to cases 2 and 3, (and rename the variable
Z to X) we achieve:

minimize ∥X∥∗
subject to PΩ(X) = PΩ(M)

(6)

Later, we show that the optimal solution to this Nuclear Norm Minimization problem is equivalent
to the original matrix M under certain conditions.

3.2 Coherence

This section uses information presented in Candès and Recht (2009).
Coherence is a measure of how close a subspace is to containing a standard basis. We will see
that coherence is a factor determining how many entries sampled uniformly at random are needed
for exact matrix reconstruction. Before formally exploring how coherence relates to matrix recon-
struction, consider the following definition: the coherence of a subspace U with dimension r is
given by

µ(U) = n
r max
1≤i≤n
∥PUei∥

2

where PU ∈ Rn×n is the projection from Rn onto the subspace U . Notice that a subspace U
containing a standard basis vector ei will have

µ(U) = n
r max∥PUei∥

2

= n
r ∥ei∥

2

= n
r

This is clearly an upper bound because the projection of a unit vector onto a subspace cannot
have length greater than 1. Candès and Recht also note that the minimum bound for coherence
has a value of 1, and occurs when the entries of U have magnitude 1√

n
.

A matrix is considered low coherence if its column and row spaces have low coherence. It turns
out that matrices with low coherence can be reconstructed with fewer entries sampled uniformly
at random. We will explain this in detail in the next section, but this result is intuitively correct
because matrices with high coherence will have rows that look very similar to standard basis
vectors, and thus we need to sample more to guarantee that we select the non-zero entry.

3.3 Coherence and Matrix Completion

For intuition about why sampling uniformly at random is more effective for low coherence matrices,
consider the SVD formulation of the target matrix M

M =
r

∑
i=1

σiuiv
∗
i

Let U be a matrix with columns u1, . . . ,ur and let V be a matrix with columns v1, . . . ,vr. By the
properties of SVD, ui and vi form the basis for the column space and row space, respectively. Take
a basis vector of the column space to be some arbitrary standard basis vector (uk = ej); the matrix
has high coherence because the column space has high coherence. Notice that σkukv∗k = σkejv∗k ,
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which is a matrix with zeroes in every entry except the jth row. If none of the jth row entries are
sampled, then there is no distinction between PΩ(∑r

i=1 σiuiv∗i ) and PΩ(∑r
i=1[σiuiv∗i ]−σkukvk). As

a result, M cannot be an optimal solution to the nuclear norm minimization problem (6). Let
Y = ∑

r
i=1[σiuiv∗i ] −σkukvk, M = ∑

r
i=1 σiuiv∗i , and OPT denote the set of optimal solutions to (6).

Then:
∥Y ∥∗ < ∥M∥∗ and PΩ(Y ) = PΩ(M) Ô⇒ M ∉ OPT

The nuclear norm of Y is less than that of M because it has one less singular value and the nuclear
norm is the summation of singular values.
For the above reason, some assumptions must be made about the coherence of matrix M to tightly
bound the number of necessary samples for matrices of different coherence.

Assumption 1 (A1).
max(µ(U), µ(V )) ≤ µ0

where matrix U has rows u1, . . . ,ur and matrix V has rows v1, . . . ,vr.

Assumption 2 (A2). Every entry of the matrix ∑i∈[r]uiv∗i ∈ Rn1×n2 is less than or equal to
µ1

√
r

n1n2

Both, µ0 and µ1 measure how distributed the influence of singular values and rows are on entries
of matrix M . Recall the example highly coherent singular vectors had on entries of M . As
coherence increases, singular vectors and values begin to be expressed on fewer and fewer entries
of M and sampling uniformly at random may miss this smaller set of entries. The main theorem
will establish a lower bound on the necessary number of sampled entries in terms of n, r, µ0, and
µ1 to account for matrix size, rank, and coherence.
For note, these assumptions are made by Candès and Recht (2009). Other papers, like Candes
and Tao (2010) make different variations assumptions that produce slightly different bounds on
the necessary number of entries to sample.

3.4 Main Theorem

This uses information presented in Candès and Recht (2009) and Candes and Tao (2010).

Theorem 1. Take M ∈ Rn1×n2 satisfying incoherence assumptions A1 and A2 with parameters µ1

and µ2. Let n =max(n1, n2) and let r be the rank of M . Given m entries of M sampled uniformly
at random, where m satisfies

m ≥ Cmax(µ2
1, µ

1/2
0 µ1, µ0n

1/4) ⋅ nr(β logn)

for some constants C and c, the matrix M will be the unique optimal solution to the nuclear norm
minimization problem (6) with probability 1 − cn−β for some β ≥ 2.

This theorem provides lower bound on the necessary number of samples m. Interestingly, there
are very strong guarantees: if enough entries of M are known, M can be reconstructed exactly
with very high probability.
Other variations of this theorem also take the form m ≥ poly(nr ⋅logn). Notably, at least O(n logn)
samples are needed. Candes and Tao attribute this to the "coupon collection effect", in which one
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must draw O(n logn) times uniformly at random from a set of n unique items to collect all items
(assuming replacement). With respect to entry sampling, every row and column must be sampled
to reconstruct M . The sampling must be a "complete collection" of the rows and columns (Candès
& Recht, 2009).

3.5 Proof Outline of Main Theorem

This survey only provides a summary of the proofs required for the main theorem. Candes and
Recht provide the exhaustive proof with all steps (Candès & Recht, 2009).
The nuclear norm minimization problem (6) has been shown to be convex. By duality, the existence
of a dual certificate Y can be used to confirm the optimally the primal X =M for (6). Take the
Lagrangian of (6):

L(X,Y ) = ∥X∥∗ + ⟨Y , (PΩ(M) − PΩ(X))⟩

Although nuclear norm is not differentiable across the entire domain, it has a sub-gradient at every
point. Let ∂∥X∥∗ be the set of all sub-gradients of the nuclear norm at X. If M is an optimal
solution, then by the KKT conditions, ∃Y ∈ Rn1×n2 such that

0 ∈ ∂∥M∥ +∆⟨Y , (PΩ(M) − PΩ(X))⟩ ≡ 0 ∈ ∂∥M∥∗ + ⟨Y ,−PΩ⟩

≡ 0 ∈ ∂∥M∥∗ − PΩ(Y )

≡ PΩ(Y ) ∈ ∂∥M∥∗

The set ∂∥M∥∗ is known to include ∑r
i=1uiv∗i +W if and only if

• The column space of W is orthogonal to the column space of M and the row space of W is
orthogonal to the row space of M

• ∥W ∥ ≤ 1

To simplify the above, define an orthogonal decomposition PT ⊕PT � , where

PT (X) = PUX +XPV −PUXPV

PT �(X) = (I − PT )(X)

This decomposition is designed in such a way that PΩ restricted to the domain T is injective.
Thus, the main theorem can be proven by showing:

• PT (Y ) = ∑r
i=1ukv∗k

• ∥PT�Y ∥ ≤ 1

Note that a Y satisfying the above will be in the set ∂∥M∥∗. The entire main theorem to this
point has been reduced to showing that the above is satisfied with high probability. From here,
Candès and Recht, 2009 identify a matrix satisfying the equality constraints and show its spectral
norm is less than one with high probability. Candes and Tao, 2010 employ moment methods to
show random matrices satisfy these conditions with high probability.
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4 Applications

4.1 NBA Game Prediction

In an effort to explore the power of low-rank matrix completion in realistic settings, we make use
of low-rank matrix completion in predicting the results of NBA games during regular seasons. We
evaluate the performance of low-rank matrix completion subject to different interpretation of the
NBA data set and different formulations of the low-rank matrix completion problem.
The data set consists of the statistics of NBA teams during the season 2018-2019 obtained from
www.basketball-reference.com. The data is obtained via a web-scraper written in Python. The
source also defines the following related metrics.

Offensive Rating (ORtg) The ORtg of a team measures the number of “points scored per 100
possessions”.

Pace The pace factor is an estimate of the number of possessions per 48 minutes by a team.

As usual, let M ∈ Rn1×n2 be the target matrix and X ∈ Rn1×n2 be our variable. Furthermore, let
O ∈ Rn1×n2 denote for each entry Oij the average offensive rating of team i when playing against
team j, and P ∈ Rn1×n2 denote for each entry Pij the pace of the game between team i and j. Note
that n1 = n2 = 30 since there are 30 teams in the NBA. We begin with an extreme simplification of
the games, using the following formula, which we call “score potential,” to evaluate how well team
i does against team j

Mij =
OijPij

100
(7)

The reasoning behind this equation is as follows: offensive rating gives us the points a team scores
in 100 possessions, so we divide by 100 to get the average points scored per possession. Then,
we multiply by the estimated number of possessions per game (pace) to get the predicted score
potential for the match-up. We assume that if Mij >Mji, then team i wins. Conversely, team j
wins.
We attempt to find M by recovering O and P respectively given some PΩ(O) and PΩ(P ). Let
K denote the proportion of entries observed in O and P .

4.1.1 Naive Nuclear Norm Minimization

In this section, we explore the accuracy of the original nuclear norm minimization SDP described
in (6).
The root mean squared error of the recovered matrix Ô (and similarly for P̂ and M̂ ) is calculated
using the following formula:

RMSE(Ô) =
1

n1n2

n1

∑
i=0

n2

∑
j=0

√

(Ôij −Oij)
2

As shown in Figure 1a, RMSE and K exhibit an approximately linear relationship.
However, this approach would potentially lead to over-fitting of the model (Mazumder et al., 2010),
because the constraint PΩ(X) = PΩ(M) from (6) ensures that our model performs perfectly on
observed inputs, but makes no guarantees on the unobserved inputs.

8

www.basketball-reference.com


(a) Ô and P̂ is computed using (6). (b) Ô and P̂ is computed using (9).

Figure 1: Root mean squared error (RMSE) of offensive ratings Ô and pace P̂ with respect
to O and P , respectively. Ô and P̂ is computed using different formulation of nuclear norm
minimization using the common mask Ω that samples Kn1n2 observations uniformly at random.
The score potential is computed using (7) with input Ô and P̂ .

4.1.2 Relaxed Nuclear Norm Minimization

To prevent our model from over-fitting, we motivate the following convex relaxation of (6) described
by Fazel (2002).

minimize ∥X∥∗
subject to ∑

(i,j)∈Ω
(Mij −Xij)

2 ≤ δ (8)

where δ ≥ 0 is a parameter. As opposed to (6), the constraint of (8) allows for a square loss of at
most δ, allowing us to prevent the model from over-fitting.
According to Mazumder et al. (2010), (8) can be rewritten in the following Lagrangian form

minimize 1
2 ∑
(i,j)∈Ω

(Mij −Xij)
2 + λ∥X∥∗. (9)

where λ is a hyper-parameter controlling the trade-off between nuclear norm and square loss. We
attempt to tune the model by solving (9) with various λ input, assuming that K = 0.9. The result
of the model tuning is shown in Figure 2. We conclude that the λ = 25 is optimal for predicting
the score potential with K = 0.9. Although ideally we should find optimal λ for all K, doing so
will be computationally expensive and time-consuming, so instead we adopt λ = 25 as the optimal
for all K. Thus, we will use λ = 25 as our hyper-parameter for any solving of (9).
As shown in Figure 3, (6) out-performs (9) for almost every K and every metric (ORtg, pace, and
score potential). However, in theory, (9) should perform much better when there is a significant
difference in the cardinality of the testing and training.

4.1.3 Normalizing the Data

In an effort to reduce the rank of the data, we attempt to normalize the entries of O. Previously,
the values of O were around 100, and its singular values ranged from σ1(O) = 3000 to about
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Figure 2: The difference between the RMSE of the two formulations (naive − relaxed). Note that
a point above y = 0 indicates that naive performed better for this metric.

100. Our normalized matrix ON had a maximum singular value of σ1(ON) = 22 with most of the
smaller singular values staying around 1. By normalizing the original data, we hoped to reduce
the magnitude of the singular values to create an effectively low rank matrix that we could predict
on. Then, if we successfully reconstructed the normalized matrix, we would simply re-scale the
predicted value by our normalization factor to get the original value.
Unfortunately, our hypothesis backfired. While normalizing the original matrix did lower the
singular values and did, in some sense, create a lower rank matrix which might be more plausible
to predict, we weren’t able to decrease the rank by enough (we wanted more singular values to be
close to 0, not 1). Further, when we re-scaled our predicted values, any small error in normalized
prediction was suddenly scaled up one hundred-fold, resulting in an even greater error than before,
as can be seen in 4a and 4b.

4.1.4 Discussion

We suspect that our formulation of the NBA prediction problem is not inherently low-rank because,
unlike the Netflix problem, the offensive side and defensive side of a basketball game does not fall
into common categories. In particular, the offensive rating and the pace of a game does not
depend on a few common factors. In fact, there are many “surprise” factors that are difficult
to categorize, which complicates the rank of our matrix. As an example, our formulation of the
problem replying on score potential does not take into account injuries, home-advantage, time of
season, and improvement of teams over time.
We believe that for competitive sports, it is difficult to apply low-rank matrix completion for
predicting outcomes. This is primarily because team’s have an incentive to change. During a
NBA season, teams are encouraged to improve their skills by making changes to their play-style,
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Figure 3: The RSME for various λ. Note that due to technical difficulties, we are not able to
produce results for some values of λ

team composition, etc. This makes it especially hard to group teams into common offensive and
defensive categories, as it is possible for teams to switch to a more favorable category.
If the NBA data were to be low rank, we would expect teams to be categorized into distinct
offensive and defensive archetypes that have clear advantages over one another. For example, a
team that relied heavily on shooting three pointers should always have an advantage over a team
with bad three pointer defense. This is not what occurs in real life. Teams that are good at
shooting may shoot bad some games or have a different game plan. More importantly, the teams
must not change their play-style during the season.
On the other hand, for data that are commonly considered low-rank such as movie preferences,
social networks, medical records (Udell & Townsend, 2019), the participating parties have no
incentive to change. For instance, in the Netflix problem, there is no notion of a “better” preferences
for the users, and thus the lack of incentive for a user to change their preferences.
Moreover, an additional factor that is not in our favor is the relatively small data set that we have
to work with. Recall that M was a 30× 30 matrix, which is very small in the scheme of data sets.
Udell and Townsend (2019) showed the rank of a matrix, in general, increases slower as the matrix
size increases. Hence, big data sets are more likely to be of low-rank.
We are unable to show rigorously the relationship between incentive to change and high-rank
matrices. However, this is an interesting future direction to explore as it makes claim about
difficulty of prediction for all data sets where competition between parties is involved.
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(a) Ô and P̂ is computed using (6) (b) Ô and P̂ is computed using (9)

Figure 4: Root mean squared error (RMSE) of offensive ratings Ô and pace P̂ with respect to
normalized O and the original P , respectively. Ô and P̂ is computed using different formulation of
nuclear norm minimization using the common mask Ω that samples Kn1n2 observations uniformly
at random. The score potential is computed using (7) with input Ô and P̂ .

4.2 3D Model Completion

Inspired by applications of matrix completion for image recovery, we extend our results from matrix
to 3D tensor and apply it to 3D model recovery. For a given 3D model (represented by polygon
mesh or point cloud), we first compute a color voxel grid represented by three 3D tensor where
each entry contains information of its RGB value (between 0 to 255) and a density voxel grid
represented by one 3D tensor where each entry is either 1 or 0. Then we randomly remove part of
the color voxel grid by clearing some of the RGB value to 0. Finally, we run our tensor completion
algorithm on the three 3D tensor and reconstruct the model with completed color voxel grid and
original density voxel grid. We analyze and compare the reconstruction results with ground truth
on two different models with 30%, 50% and 80% missing data.

4.2.1 Definition and Notation

To extend from matrix to 3D tensor, we use similar definitions and notations as mentioned in
Kolda and Bader (2009):

3D Rank-one Tensor A 3D Tensor X ∈ RM×N×K is rank − one if it can be written as the outer
product of three vectors, i.e.,

X = a1 ○ a2 ○ a3.

The symbol ○ represents the vector outer product.

3D Tensor Rank The rank of a 3D tensor X ∈ RM×N×K , denoted by ϕ(X ), is the smallest
number of rank-one tensors that sum up to X .

Unfortunately, unlike matrix rank, determining the rank of a 3D tensor is NP-hard (Håstad,
1990).

12



kth-mode unfolding Let matrix X(k) ∈ Rnk×(∏l≠k nl) denote the kth-mode unfolding (k=1,2,3) of
a 3D tensor X ∈ RM×N×K .

The matrix from kth-mode unfolding of a 3D tensor is obtained by considering the kth-mode
as the first dimension and collapsing the other two modes into the second dimension.

4.2.2 Nuclear Norm Extension: Low-Rank Tensor Completion

For a partially observed 3D tensorM ∈ RM×N×K , the tensor completion problem can be formulated
as follows:

minimize ϕ(X )
subject to PΩ(X ) = PΩ(M)

As mentioned previously, this problem is NP-hard. In order to make it computationally tractable,
many research tried to extend the matrix nuclear norm to obtain a reasonable approximation
for tensor rank. While there are a few variations of tensor nuclear norm, we select a rather
straightforward approach with a weighted sum of multiple matrix nuclear norms proposed by Liu
et al. (2013) and replace the problem as follows:

minimize ∑
3
k=1αk∥X(k)∥∗

subject to PΩ(X ) = PΩ(M),
∑

3
k=1αk = 1

Since the voxel grid has the same dimensions in all three mode, we should treat all three unfoldings
equally and set αk =

1
3 .

4.2.3 Results Analysis

We compare the reconstruction results with ground truth with 30%, 50%, 80% color data removed.
We first use a simple banana model with 80% of its color removed to verify the feasibility of our
algorithm and achieve a final RMSE of 10.82.

(a) 80% removed (b) Ground Truth (c) Recovered

Figure 5: Reconstruction of the banana model with 80% missing color which reached a final RMSE
of 10.82. The size of voxel grid is 200×200×200.

We then apply the algorithm to a much more complicated eagle model with more color details.
With more missing data, the reconstructed model loses more details and tries to recover the color
with larger regional patterns. The three models achieve a final RMSE of 14.50, 22.48, 36.22
respectively.
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(a) 30% removed (b) Ground Truth (c) Recovered

Figure 6: Reconstruction of the eagle model with 30% missing color which reached a final RMSE
of 14.50. The size of voxel grid is 200×200×200.

(a) 50% removed (b) Ground Truth (c) Recovered

Figure 7: Reconstruction of the eagle model with 50% missing color which reached a final RMSE
of 22.48. The size of voxel grid is 200×200×200.

(a) 80% removed (b) Ground Truth (c) Recovered

Figure 8: Reconstruction of the eagle model with 80% missing color which reached a final RMSE
of 36.22. The size of voxel grid is 200×200×200.

4.2.4 Discussion

Because we use dense voxel grid to represent finer models, the computational speed significantly
slows down when we increase the size of the grid. Alternatively, if we have the mesh representation
of a 3D model, we can just store the known vertex location and color in a coarser grid and use
trilinear interpolation to fill in colors of unknown vertices after reconstruction.
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As we can see in the reconstructed model, some have artifacts only along certain axis. A possible
reason is that unfolding a 3D tensor will break the multidimensional structure of the original data
and lead to degraded reconstruction result. To avoid unfolding, other definitions of tensor nuclear
norm and even some nonconvex approximation for tensor rank such as truncated nuclear norm
(Chen et al., 2020) or Schatten p-norm (Kong et al., 2018) can be explored and compared for this
specific application.
Other than randomly removing data, more experiments can be done with non-random missing
which might be more common in cases like surface erosion or overexposure during model capture.
Non-random recovery should be more challenging since the missing data is more correlated and
would work better when model has a clear pattern.
Although we only defined nuclear norm for 3D tensor, the approach can be extended to higher
dimension tensor. One natural application might be recovering missing information for spatial
data that changes over time.
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